These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12924722)

  • 1. Computational and experimental study of proximal flow in ventricular catheters. Technical note.
    Lin J; Morris M; Olivero W; Boop F; Sanford RA
    J Neurosurg; 2003 Aug; 99(2):426-31. PubMed ID: 12924722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis.
    Galarza M; Giménez Á; Valero J; Pellicer OP; Amigó JM
    Childs Nerv Syst; 2014 Jan; 30(1):105-16. PubMed ID: 23881424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics.
    Galarza M; Giménez Á; Pellicer O; Valero J; Amigó JM
    Childs Nerv Syst; 2015 Jan; 31(1):37-48. PubMed ID: 25096070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic cerebrospinal fluid flow patterns in ventricular catheters prototypes.
    Galarza M; Giménez Á; Valero J; Pellicer O; Martínez-Lage JF; Amigó JM
    Childs Nerv Syst; 2015 Jun; 31(6):873-84. PubMed ID: 25686900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation of ventricular catheters for hydrocephalus based on parametric designs.
    Galarza M; Giménez A; Amigó JM; Schuhmann M; Gazzeri R; Thomale U; McAllister JP
    Childs Nerv Syst; 2018 Feb; 34(2):267-276. PubMed ID: 28812141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric study of ventricular catheters for hydrocephalus.
    Galarza M; Giménez A; Pellicer O; Valero J; Amigó JM
    Acta Neurochir (Wien); 2016 Jan; 158(1):109-15; discussion 115-6. PubMed ID: 26530709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Pellicer O; Valero J; Amigó JM
    Biomed Eng Online; 2016 Jul; 15 Suppl 1(Suppl 1):71. PubMed ID: 27455059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies.
    Whitehead WE; Riva-Cambrin J; Kulkarni AV; Wellons JC; Rozzelle CJ; Tamber MS; Limbrick DD; Browd SR; Naftel RP; Shannon CN; Simon TD; Holubkov R; Illner A; Cochrane DD; Drake JM; Luerssen TG; Oakes WJ; Kestle JR;
    J Neurosurg Pediatr; 2017 Feb; 19(2):157-167. PubMed ID: 27813457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow ventricular catheters for shunted hydrocephalus: initial clinical results.
    Galarza M; Etus V; Sosa F; Argañaraz R; Mantese B; Gazzeri R; Montoya CG; de la Rosa P; Guerrero AL; Chaban G; Giménez Á; Amigó JM
    Childs Nerv Syst; 2021 Mar; 37(3):903-911. PubMed ID: 33123821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventriculoperitoneal shunt flow dependency on the number of patent holes in a ventricular catheter.
    Ginsberg HJ; Sum A; Drake JM; Cobbold RS
    Pediatr Neurosurg; 2000 Jul; 33(1):7-11. PubMed ID: 11025415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shunt revision by coagulation with retention of the ventricular catheter.
    Hudgins RJ; Boydston WR
    Pediatr Neurosurg; 1998 Aug; 29(2):57-9. PubMed ID: 9792956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perforation holes in ventricular catheters--is less more?
    Thomale UW; Hosch H; Koch A; Schulz M; Stoltenburg G; Haberl EJ; Sprung C
    Childs Nerv Syst; 2010 Jun; 26(6):781-9. PubMed ID: 20024658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventricular catheter placement with a frameless neuronavigational system: a 1-year experience.
    Azeem SS; Origitano TC
    Neurosurgery; 2007 Apr; 60(4 Suppl 2):243-7; discussion 247-8. PubMed ID: 17415159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of proximal catheter occlusion and design of a shunt tap aspiration system.
    Olson E; Garst J; Blank J; Abbott H; Shaffer A; Anderson Z; Nair K; Lin J
    Childs Nerv Syst; 2021 Mar; 37(3):895-901. PubMed ID: 33029728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior ventricular catheter burr-hole localizer. Technical note.
    Garell PC; Mirsky R; Noh MD; Loftus CM; Hitchon PW; Grady MS; Dacey RG; Howard MA
    J Neurosurg; 1998 Jul; 89(1):157-60. PubMed ID: 9647190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resistance proximal "scaled" ventricular catheters.
    Qi D; Olson E; Ivankovic S; Sommer T; Nair K; Morris M; Lin J
    Childs Nerv Syst; 2022 Feb; 38(2):333-341. PubMed ID: 34654964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational fluid dynamics simulation framework for ventricular catheter design optimization.
    Weisenberg SH; TerMaath SC; Barbier CN; Hill JC; Killeffer JA
    J Neurosurg; 2018 Oct; 129(4):1067-1077. PubMed ID: 29125413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction.
    Suresh S; Black RA
    J Biomater Appl; 2015 Feb; 29(7):1028-38. PubMed ID: 25245779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Thomale U; Schuhmann MU; Valero J; Amigó JM
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recanalization of obstructed cerebrospinal fluid ventricular catheters using ultrasonic cavitation.
    Ginsberg HJ; Drake JM; Peterson TM; Cobbold RS
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS403-12; discussion ONS412. PubMed ID: 17041510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.