These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12924818)

  • 1. The real response of bone to exercise.
    Boyde A
    J Anat; 2003 Aug; 203(2):173-89. PubMed ID: 12924818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musculoskeletal responses of 2-year-old Thoroughbred horses to early training. 8. Quantitative back-scattered electron scanning electron microscopy and confocal fluorescence microscopy of the epiphysis of the third metacarpal bone.
    Boyde A; Firth EC
    N Z Vet J; 2005 Apr; 53(2):123-32. PubMed ID: 15846396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of subchondral bone remodelling in collapse of the articular surface of Thoroughbred racehorses with palmar osteochondral disease.
    Bani Hassan E; Mirams M; Ghasem-Zadeh A; Mackie EJ; Whitton RC
    Equine Vet J; 2016 Mar; 48(2):228-33. PubMed ID: 25582246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle.
    Doube M; Firth EC; Boyde A
    Osteoarthritis Cartilage; 2007 Nov; 15(11):1283-92. PubMed ID: 17517523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subchondral bone failure in overload arthrosis: a scanning electron microscopic study in horses.
    Norrdin RW; Stover SM
    J Musculoskelet Neuronal Interact; 2006; 6(3):251-7. PubMed ID: 17142946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exercise on bone density in distal regions of the equine third metacarpal bone in 2-year-old thoroughbreds.
    Riggs CM; Boyde A
    Equine Vet J Suppl; 1999 Jul; (30):555-60. PubMed ID: 10659317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Articular calcified cartilage canals in the third metacarpal bone of 2-year-old thoroughbred racehorses.
    Boyde A; Firth EC
    J Anat; 2004 Dec; 205(6):491-500. PubMed ID: 15610396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.
    Whitton RC; Trope GD; Ghasem-Zadeh A; Anderson GA; Parkin TD; Mackie EJ; Seeman E
    Bone; 2010 Oct; 47(4):826-31. PubMed ID: 20659599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro modeling of the bone/implant interface.
    Davies JE
    Anat Rec; 1996 Jun; 245(2):426-45. PubMed ID: 8769677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.
    Mulari MT; Qu Q; Härkönen PL; Väänänen HK
    Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of bone resorption-repair coupling in vitro.
    Jones SJ; Gray C; Boyde A
    Anat Embryol (Berl); 1994 Oct; 190(4):339-49. PubMed ID: 7840421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular transducer in bone: What is it?
    Taylor D; Hazenberg J; Lee TC
    Technol Health Care; 2006; 14(4-5):367-77. PubMed ID: 17065758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of bone, articular cartilage and tendon to exercise in the horse.
    Firth EC
    J Anat; 2006 Apr; 208(4):513-26. PubMed ID: 16637875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution microscopic survey of third metacarpal articular calcified cartilage and subchondral bone in the juvenile horse: possible implications in chondro-osseous disease.
    Boyde A; Firth EC
    Microsc Res Tech; 2008 Jun; 71(6):477-88. PubMed ID: 18320577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints.
    Takagi M; Santavirta S; Ida H; Ishii M; Takei I; Niissalo S; Ogino T; Konttinen YT
    J Bone Miner Res; 2001 Jan; 16(1):79-88. PubMed ID: 11149493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies.
    Taylor AM; Boyde A; Davidson JS; Jarvis JC; Ranganath LR; Gallagher JA
    Eur Cell Mater; 2012 Apr; 23():300-8; discussion 308-9. PubMed ID: 22522284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fatigue damage and repair in bone].
    Zhang C; Wu D; Guo Y; Guo T; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.