These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 12924932)
1. How cytochromes with different folds control heme redox potentials. Mao J; Hauser K; Gunner MR Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932 [TBL] [Abstract][Full Text] [Related]
2. pH dependence of heme electrochemistry in cytochromes investigated by multiconformation continuum electrostatic calculations. Hauser K; Mao J; Gunner MR Biopolymers; 2004 May-Jun 5; 74(1-2):51-4. PubMed ID: 15137093 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Zheng Z; Gunner MR Proteins; 2009 May; 75(3):719-34. PubMed ID: 19003997 [TBL] [Abstract][Full Text] [Related]
4. Effect of four helix bundle topology on heme binding and redox properties. Gibney BR; Rabanal F; Reddy KS; Dutton PL Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784 [TBL] [Abstract][Full Text] [Related]
5. Design and synthesis of de novo cytochromes c. Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes. Reddi AR; Reedy CJ; Mui S; Gibney BR Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400 [TBL] [Abstract][Full Text] [Related]
7. Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy. Gorbikova EA; Vuorilehto K; Wikström M; Verkhovsky MI Biochemistry; 2006 May; 45(17):5641-9. PubMed ID: 16634645 [TBL] [Abstract][Full Text] [Related]
8. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493 [TBL] [Abstract][Full Text] [Related]
9. Studies of the reduction and protonation behavior of tetraheme cytochromes using atomic detail. Teixeira VH; Soares CM; Baptista AM J Biol Inorg Chem; 2002 Jan; 7(1-2):200-16. PubMed ID: 11862556 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins. Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic characterization of triheme cytochrome PpcA from Geobacter sulfurreducens: evidence for a role played in e-/H+ energy transduction. Pessanha M; Morgado L; Louro RO; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA Biochemistry; 2006 Nov; 45(46):13910-7. PubMed ID: 17105209 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic characterization and assignment of reduction potentials in the tetraheme cytochrome C554 from Nitrosomonas europaea. Upadhyay AK; Petasis DT; Arciero DM; Hooper AB; Hendrich MP J Am Chem Soc; 2003 Feb; 125(7):1738-47. PubMed ID: 12580599 [TBL] [Abstract][Full Text] [Related]
13. Electrochemistry of unfolded cytochrome c in neutral and acidic urea solutions. Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH J Am Chem Soc; 2005 May; 127(20):7638-46. PubMed ID: 15898816 [TBL] [Abstract][Full Text] [Related]
14. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site. Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483 [TBL] [Abstract][Full Text] [Related]
15. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c. Battistuzzi G; Borsari M; Sola M; Francia F Biochemistry; 1997 Dec; 36(51):16247-58. PubMed ID: 9405059 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
18. The primary structures of the low-redox potential diheme cytochromes c from the phototrophic bacteria Rhodobacter sphaeroides and Rhodobacter adriaticus reveal a new structural family of c-type cytochromes. Vandenberghe I; Leys D; Demol H; Van Driessche G; Meyer TE; Cusanovich MA; Van Beeumen J Biochemistry; 1998 Sep; 37(38):13075-81. PubMed ID: 9748313 [TBL] [Abstract][Full Text] [Related]
19. Redox properties of wild-type and heme-binding loop mutants of bacterial cytochromes C measured by direct electrochemistry. Ye T; Kaur R; Wen X; Bren KL; Elliott SJ Inorg Chem; 2005 Nov; 44(24):8999-9006. PubMed ID: 16296855 [TBL] [Abstract][Full Text] [Related]
20. Understanding properties of cofactors in proteins: redox potentials of synthetic cytochromes b. Gámiz-Hernández AP; Kieseritzky G; Galstyan AS; Demir-Kavuk O; Knapp EW Chemphyschem; 2010 Apr; 11(6):1196-206. PubMed ID: 20411561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]