BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12924955)

  • 1. Enzymatic transition state poise and transition state analogues.
    Schramm VL
    Acc Chem Res; 2003 Aug; 36(8):588-96. PubMed ID: 12924955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleophilic participation in the transition state for human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic transition states and transition state analogues.
    Schramm VL
    Curr Opin Struct Biol; 2005 Dec; 15(6):604-13. PubMed ID: 16274984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic transition states and transition state analog design.
    Schramm VL
    Annu Rev Biochem; 1998; 67():693-720. PubMed ID: 9759501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism.
    Tsang WY; Ahmed N; Page MI
    Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions.
    Matsubara R; Kobayashi S
    Acc Chem Res; 2008 Feb; 41(2):292-301. PubMed ID: 18281949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical investigation of alpha-carbon kinetic isotope effects and their relationship to the transition-state structure of S(N)2 reactions.
    Matsson O; Dybala-Defratyka A; Rostkowski M; Paneth P; Westaway KC
    J Org Chem; 2005 May; 70(10):4022-7. PubMed ID: 15876091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope effects, dynamics, and the mechanism of solvolysis of aryldiazonium cations in water.
    Ussing BR; Singleton DA
    J Am Chem Soc; 2005 Mar; 127(9):2888-99. PubMed ID: 15740124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed comparative analysis of the catalytic mechanisms of beta-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases.
    Vocadlo DJ; Withers SG
    Biochemistry; 2005 Sep; 44(38):12809-18. PubMed ID: 16171396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picomolar inhibitors as transition-state probes of 5'-methylthioadenosine nucleosidases.
    Gutierrez JA; Luo M; Singh V; Li L; Brown RL; Norris GE; Evans GB; Furneaux RH; Tyler PC; Painter GF; Lenz DH; Schramm VL
    ACS Chem Biol; 2007 Nov; 2(11):725-34. PubMed ID: 18030989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An oxocarbenium-ion intermediate of a ribozyme reaction indicated by kinetic isotope effects.
    Unrau PJ; Bartel DP
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15393-7. PubMed ID: 14668444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.