These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1292518)

  • 21. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell.
    Abel P; Müller A; Fischer U
    Biomed Biochim Acta; 1984; 43(5):577-84. PubMed ID: 6477543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies for testing long-term transcutaneous amperometric glucose sensors.
    Long N; Yu B; Moussy Y; Moussy F
    Diabetes Technol Ther; 2005 Dec; 7(6):927-36. PubMed ID: 16386099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of the one-point in vivo calibration of "wired" glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration.
    Schmidtke DW; Heller A
    Anal Chem; 1998 May; 70(10):2149-55. PubMed ID: 9608851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A needle-type sensor for monitoring glucose in whole blood.
    Yang Q; Atanasov P; Wilkins E
    Biomed Instrum Technol; 1997; 31(1):54-62. PubMed ID: 9051226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm.
    Aussedat B; Thomé-Duret V; Reach G; Lemmonier F; Klein JC; Hu Y; Wilson GS
    Biosens Bioelectron; 1997; 12(11):1061-71. PubMed ID: 9451795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A miniaturized Nafion-based glucose sensor: in vitro and in vivo evaluation in dogs.
    Moussy F; Harrison DJ; Rajotte RV
    Int J Artif Organs; 1994 Feb; 17(2):88-94. PubMed ID: 8039946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electrocatalytic glucose sensor for in-vivo application.
    Preidel W; Saeger S; von Lucadou I; Lager W
    Biomed Instrum Technol; 1991; 25(3):215-9. PubMed ID: 1855107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Murine model of implantable glucose sensors: a novel model for glucose sensor development.
    Klueh U; Kreutzer DL
    Diabetes Technol Ther; 2005 Oct; 7(5):727-37; discussion 738-40. PubMed ID: 16241876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implanted electrochemical glucose sensors for the management of diabetes.
    Heller A
    Annu Rev Biomed Eng; 1999; 1():153-75. PubMed ID: 11701486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats.
    Bobbioni-Harsch E; Rohner-Jeanrenaud F; Koudelka M; de Rooij N; Jeanrenaud B
    J Biomed Eng; 1993 Nov; 15(6):457-63. PubMed ID: 8277748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the accuracy of a microdialysis-based glucose sensor during insulin-induced hypoglycemia, its recovery, and post-hypoglycemic hyperglycemia in humans.
    Rossetti P; Porcellati F; Fanelli CG; Bolli GB
    Diabetes Technol Ther; 2006 Jun; 8(3):326-37. PubMed ID: 16800754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs.
    Claremont DJ; Sambrook IE; Penton C; Pickup JC
    Diabetologia; 1986 Nov; 29(11):817-21. PubMed ID: 3545958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous tissue glucose monitoring correlates with measurement of intermittent capillary glucose in patients with distributive shock.
    Ballesteros D; Martínez Ó; Blancas Gómez-Casero R; Martín Parra C; López Matamala B; Estébanez B; Chana M
    Med Intensiva; 2015 Oct; 39(7):405-11. PubMed ID: 25499901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performances of potentially implantable rechargeable glucose sensors in vitro at body temperature.
    Xie SL; Wilkins E
    Biomed Instrum Technol; 1991; 25(5):393-9. PubMed ID: 1933090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of chronically implanted subcutaneous glucose sensors in dogs: the effect of surrounding fluid masses.
    Ward WK; Troupe JE
    ASAIO J; 1999; 45(6):555-61. PubMed ID: 10593686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate.
    Nishida K; Sakakida M; Ichinose K; Uemura T; Uehara M; Kajiwara K; Miyata T; Shichiri M; Ishihara K; Nakabayashi N
    Med Prog Technol; 1995 May; 21(2):91-103. PubMed ID: 7565400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors.
    Koudelka M; Rohner-Jeanrenaud F; Terrettaz J; Bobbioni-Harsch E; de Rooij NF; Jeanrenaud B
    Biosens Bioelectron; 1991; 6(1):31-6. PubMed ID: 2049169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local release of masitinib alters in vivo implantable continuous glucose sensor performance.
    Avula M; Jones D; Rao AN; McClain D; McGill LD; Grainger DW; Solzbacher F
    Biosens Bioelectron; 2016 Mar; 77():149-56. PubMed ID: 26402593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing glucose sensors for in vivo use.
    Pickup J
    Trends Biotechnol; 1993 Jul; 11(7):285-91. PubMed ID: 7763951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The glucose sensor: the missing link in diabetes therapy.
    Pfeiffer EF
    Horm Metab Res Suppl; 1990; 24():154-64. PubMed ID: 2272621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.