BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 12925863)

  • 21. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.
    Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B
    Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Runquist D; Fonseca C; Rådström P; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):123-30. PubMed ID: 19002682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. gTME for improved xylose fermentation of Saccharomyces cerevisiae.
    Liu H; Yan M; Lai C; Xu L; Ouyang P
    Appl Biochem Biotechnol; 2010 Jan; 160(2):574-82. PubMed ID: 19067246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.
    Cao H; Yue M; Li S; Bai X; Zhao X; Du Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption.
    Hector RE; Qureshi N; Hughes SR; Cotta MA
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):675-84. PubMed ID: 18629494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae.
    Souto-Maior AM; Runquist D; Hahn-Hägerdal B
    J Biotechnol; 2009 Aug; 143(2):119-23. PubMed ID: 19560495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae].
    Liu H; Tang W; Lai C; Yan M; Xu L; Ouyang P
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):875-9. PubMed ID: 19777815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M; Ho NW
    Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.