These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12926630)

  • 21. [Phosphorus removal and recovery from human urine with MAP crystallization].
    Zhao QL; Liu ZG; Li W; Qiu W; Wang JF
    Huan Jing Ke Xue; 2007 Oct; 28(10):2223-9. PubMed ID: 18268983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen and phosphorus removal for swine wastewater by ammonium crystallization and intermittent aeration process.
    Liao CM; Maekawa T; Feng XD
    J Environ Sci Health B; 1995 Sep; 30(5):733-58. PubMed ID: 8522733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste.
    Ndegwa PM; Hamilton DW; Lalman JA; Cumba HJ
    Bioresour Technol; 2008 Apr; 99(6):1972-80. PubMed ID: 17532625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage.
    Feng C; Shimada S; Zhang Z; Maekawa T
    Waste Manag; 2008; 28(10):1827-34. PubMed ID: 17904349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen and phosphorus removal from swine wastewater by intermittently aerated dynamic-flow system.
    Hur HW; Park SK; Chung KY; Kang H; Lee SI
    Water Sci Technol; 2004; 49(5-6):367-72. PubMed ID: 15137446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is phosphorus recovery from waste water feasible?
    Berg U; Knoll G; Kaschka E; Weidler PG; Nüesch R
    Environ Technol; 2007 Feb; 28(2):165-72. PubMed ID: 17396410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical phosphorus removal model based on equilibrium chemistry.
    Takács I; Murthy S; Fairlamb PM
    Water Sci Technol; 2005; 52(10-11):549-55. PubMed ID: 16459833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO
    Shashvatt U; Benoit J; Aris H; Blaney L
    Water Res; 2018 Oct; 143():19-27. PubMed ID: 29935400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions.
    Molle P; Liénard A; Grasmick A; Iwema A
    Water Sci Technol; 2003; 48(5):75-83. PubMed ID: 14621150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy.
    Turner BL
    J Environ Qual; 2004; 33(2):757-66. PubMed ID: 15074830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater.
    Obaja D; Macé S; Mata-Alvarez J
    Bioresour Technol; 2005 Jan; 96(1):7-14. PubMed ID: 15364074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach.
    Bhuiyan MI; Mavinic DS; Koch FA
    Water Sci Technol; 2008; 57(2):175-81. PubMed ID: 18235168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The application of calcium phosphate precipitation chemistry to phosphorus recovery: the influence of organic ligands.
    van der Houwen JA; Vaisami-Jones E
    Environ Technol; 2001 Nov; 22(11):1325-35. PubMed ID: 11804354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-step biological process for the treatment of the liquid fraction of cattle manure.
    Marañón E; Castrillón L; García L; Vázquez I; Fernández-Nava Y
    Bioresour Technol; 2008 Nov; 99(16):7750-7. PubMed ID: 18394883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of sludge from pond system for treatment of piggery wastes.
    Zanotelli CT; Costa RH; Perdomo CC
    Water Sci Technol; 2005; 51(12):235-8. PubMed ID: 16114688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous removal of N and P in a SBR with production of valuable compounds: application to concentrated wastewaters.
    Sperandio M; Pambrun V; Paul E
    Water Sci Technol; 2008; 58(4):859-64. PubMed ID: 18776622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorus recovery from human urine and anaerobically treated wastewater through pH adjustment and chemical precipitation.
    Kemacheevakul P; Polprasert C; Shimizu Y
    Environ Technol; 2011; 32(7-8):693-8. PubMed ID: 21879544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.
    Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A
    Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.