These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12926632)

  • 1. Effect of lime stabilisation of enhanced biological phosphorus removal sludges on the phosphorus availability to plants.
    Seyhan D; Erdincler A
    Water Sci Technol; 2003; 48(1):155-62. PubMed ID: 12926632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agricultural use of municipal wastewater sludges: phosphorus availability of biological excess phosphorus removal sludges.
    Erdincler A; Seyhan LD
    Water Sci Technol; 2006; 54(5):131-8. PubMed ID: 17087378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant availability of heavy metals and phosphorus in the agricultural reuse of biological sludges.
    Seyhan D; Erdincler A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2413-23. PubMed ID: 14524693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.
    Lesjean B; Gnirss R; Adam C; Kraume M; Luck F
    Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate fertilizer from sewage sludge ash (SSA).
    Franz M
    Waste Manag; 2008; 28(10):1809-18. PubMed ID: 17919895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading of existing sludge treatment processes for phosphorus management serving a EBPR WWTP.
    Chen W; Steen FM; Green PG
    Environ Technol; 2004 May; 25(5):523-31. PubMed ID: 15242228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process.
    Wu XL; Guan YT; Zhang X; Huang X; Qian Y
    Environ Technol; 2002 Jun; 23(6):677-84. PubMed ID: 12118619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production.
    Rughoonundun H; Granda C; Mohee R; Holtzapple MT
    Waste Manag; 2010; 30(8-9):1614-21. PubMed ID: 20392626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the potential for utilizing the resources in sludge?
    Kroiss H
    Water Sci Technol; 2004; 49(10):1-10. PubMed ID: 15259932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemical treatment of sewage sludge ashes for phosphorus recovery.
    Adam C; Peplinski B; Michaelis M; Kley G; Simon FG
    Waste Manag; 2009 Mar; 29(3):1122-8. PubMed ID: 19036571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils.
    Warman PR; Termeer WC
    Bioresour Technol; 2005 May; 96(8):955-61. PubMed ID: 15627567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience with phosphorus removal and sludge handling and disposal in Flanders.
    Bixio D; Boonen I; Thoeye C; De Gueldre G
    Water Sci Technol; 2005; 52(4):19-25. PubMed ID: 16235742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and dewaterability of raw and stabilized sludge using different treatment methods.
    Mijaylova Nacheva P; Moeller G; Chávez ; Ramírez Camperos E; Cardaso Vigueros L
    Water Sci Technol; 2002; 46(10):123-30. PubMed ID: 12479461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.
    Bickers PO; Bhamidimarri R; Shepherd J; Russell J
    Water Sci Technol; 2003; 48(8):43-51. PubMed ID: 14682569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reactive substrates used for the removal of phosphorus from wastewater on the fertility of acid soils.
    Cucarella V; Zaleski T; Mazurek R; Renman G
    Bioresour Technol; 2008 Jul; 99(10):4308-14. PubMed ID: 17920265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phosphorus recovery requirements on Swedish sludge management.
    Levlin E; Löwén M; Stark K; Hultman B
    Water Sci Technol; 2002; 46(4-5):435-40. PubMed ID: 12361045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of phosphorus release batch tests for modelling an EBPR pilot plant.
    Tykesson E; Aspegren H; Henze M; Nielsen PH; Jansen Jl
    Water Sci Technol; 2002; 45(6):99-106. PubMed ID: 11989882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.