These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12926633)

  • 1. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system.
    Shimamura K; Tanaka T; Miura Y; Ishikawa H
    Water Sci Technol; 2003; 48(1):163-70. PubMed ID: 12926633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery.
    Shimamura K; Ishikawa H; Tanaka T; Hirasawa I
    Water Environ Res; 2007 Apr; 79(4):406-13. PubMed ID: 17489275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus recovery from anaerobic digester supernatant by struvite crystallization: model-based evaluation of a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Ellis N
    Water Sci Technol; 2008; 58(6):1321-7. PubMed ID: 18845873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR).
    Battistoni P; Boccadoro R; Fatone F; Pavan P
    Environ Technol; 2005 Sep; 26(9):975-82. PubMed ID: 16196406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a process for the recovery of phosphorus resource from digested sludge by crystallization technology.
    Shimamura K; Ishikawa H; Mizuoka A; Hirasawa I
    Water Sci Technol; 2008; 57(3):451-6. PubMed ID: 18309226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor.
    Liu X; Hu Z; Mu J; Zang H; Liu L
    Environ Technol; 2014; 35(21-24):2781-7. PubMed ID: 25176481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device.
    Suzuki K; Tanaka Y; Kuroda K; Hanajima D; Fukumoto Y; Yasuda T; Waki M
    Bioresour Technol; 2007 May; 98(8):1573-8. PubMed ID: 16919935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus recovery in aerated systems by MAP precipitation: optimizing operational conditions.
    Stumpf D; Zhu H; Heinzmann B; Kraume M
    Water Sci Technol; 2008; 58(10):1977-83. PubMed ID: 19039178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and recovery of phosphate and ammonium as struvite from supernatant in anaerobic digestion.
    Yoshino M; Yao M; Tsuno H; Somiya I
    Water Sci Technol; 2003; 48(1):171-8. PubMed ID: 12926634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor.
    Liu Z; Zhao Q; Lee DJ; Yang N
    Bioresour Technol; 2008 Sep; 99(14):6488-93. PubMed ID: 18187321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor.
    Guadie A; Xia S; Jiang W; Zhou L; Zhang Z; Hermanowicz SW; Xu X; Shen S
    J Environ Sci (China); 2014 Apr; 26(4):765-74. PubMed ID: 25079406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant.
    Fattah KP; Mavinic DS; Koch FA; Jacob C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three years experience of operating and selling recovered struvite from full-scale plant.
    Ueno Y; Fujii M
    Environ Technol; 2001 Nov; 22(11):1373-81. PubMed ID: 11804359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus removal from a real anaerobic supernatant by struvite crystallization.
    Battistoni P; De Angelis A; Pavan P; Prisciandaro M; Cecchi F
    Water Res; 2001 Jun; 35(9):2167-78. PubMed ID: 11358296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery.
    Wang J; Song Y; Yuan P; Peng J; Fan M
    Chemosphere; 2006 Nov; 65(7):1182-7. PubMed ID: 16684557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.
    Massey MS; Ippolito JA; Davis JG; Sheffield RE
    Bioresour Technol; 2010 Feb; 101(3):877-85. PubMed ID: 19793651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovering nutrients from wastewater treatment plants through struvite crystallization: CFD modelling of the hydrodynamics of UBC MAP fluidized-bed crystallizer.
    Rahaman MS; Mavinic DS
    Water Sci Technol; 2009; 59(10):1887-92. PubMed ID: 19474481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Struvite crystallisation and recovery using a stainless steel structure as a seed material.
    Le Corre KS; Valsami-Jones E; Hobbs P; Jefferson B; Parsons SA
    Water Res; 2007 Jun; 41(11):2449-56. PubMed ID: 17445863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of sludge line management to enhance phosphorus recovery in WWTP.
    Marti N; Ferrer J; Seco A; Bouzas A
    Water Res; 2008 Nov; 42(18):4609-18. PubMed ID: 18786693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.