BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12926638)

  • 1. Conversion of pollutants to fertilisers: ion exchange synthesis of potassium sulphate from acidic mine waters.
    Muraviev D
    Water Sci Technol; 2003; 48(1):199-206. PubMed ID: 12926638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process water treatment at the Ranger uranium mine, Northern Australia.
    Topp H; Russell H; Davidson J; Jones D; Levy V; Gilderdale M; Davis S; Ring R; Conway G; Macintosh P; Sertorio L
    Water Sci Technol; 2003; 47(10):155-62. PubMed ID: 12862230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of ion-exchanger grafted textiles for industrial water treatment in dynamic reactors.
    Lacour S; Serpaud B; Bollinger JC
    Water Res; 2004 Nov; 38(19):4045-54. PubMed ID: 15491652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vermitechnology for sewage sludge recycling.
    Khwairakpam M; Bhargava R
    J Hazard Mater; 2009 Jan; 161(2-3):948-54. PubMed ID: 18515003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility.
    Leblanc RJ; Allain CJ; Laughton PJ; Henry JG
    Water Sci Technol; 2004; 49(10):155-62. PubMed ID: 15259950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method.
    Dabrowski A; Hubicki Z; Podkościelny P; Robens E
    Chemosphere; 2004 Jul; 56(2):91-106. PubMed ID: 15120554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain).
    Solà C; Burgos M; Plazuelo A; Toja J; Plans M; Prat N
    Sci Total Environ; 2004 Oct; 333(1-3):109-26. PubMed ID: 15364523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain.
    Alonso E; Villar P; Santos A; Aparicio I
    Waste Manag; 2006; 26(11):1270-6. PubMed ID: 16338132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation.
    Molinari R; Gallo S; Argurio P
    Water Res; 2004 Feb; 38(3):593-600. PubMed ID: 14723928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of spentwash using chemically modified bagasse and colour removal studies.
    Mane JD; Modi S; Nagawade S; Phadnis SP; Bhandari VM
    Bioresour Technol; 2006 Sep; 97(14):1752-5. PubMed ID: 16330208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater.
    Sthiannopkao S; Sreesai S
    J Environ Manage; 2009 Aug; 90(11):3283-9. PubMed ID: 19501952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals in constructed wetland microcosmos: effects of sorption, sulphate reduction and Phragmites australis.
    Lesage E; Tack FM; De Pauw N; Verloo MG
    Commun Agric Appl Biol Sci; 2006; 71(1):59-62. PubMed ID: 17191474
    [No Abstract]   [Full Text] [Related]  

  • 20. Removal of metal ions by modified Pinus radiata bark and tannins from water solutions.
    Palma G; Freer J; Baeza J
    Water Res; 2003 Dec; 37(20):4974-80. PubMed ID: 14604644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.