BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 12926883)

  • 1. Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana.
    Southwick LM; Grigg BC; Fouss JL; Kornecki TS
    J Agric Food Chem; 2003 Aug; 51(18):5355-61. PubMed ID: 12926883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.
    Southwick LM; Appelboom TW; Fouss JL
    J Agric Food Chem; 2009 Feb; 57(4):1413-20. PubMed ID: 19178284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of grass and grass with poplar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots.
    Caron E; Lafrance P; Auclair JC; Duchemin M
    J Environ Qual; 2010; 39(2):617-29. PubMed ID: 20176835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runoff and leaching of atrazine and alachlor on a sandy soil as affected by application in sprinkler irrigation.
    Abdel-Rahman AR; Wauchope RD; Truman CC; Dowler CC
    J Environ Sci Health B; 1999 May; 34(3):381-96. PubMed ID: 10227190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean.
    Krutz LJ; Koger CH; Locke MA; Steinriede RW
    J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pesticide storage and release in unsaturated soil in Illinois, USA.
    Roy WR; Krapac IG; Chou SF; Simmons FW
    J Environ Sci Health B; 2001 May; 36(3):245-60. PubMed ID: 11411849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foliar and soil deposition of pesticide sprays in peanuts and their washoff and runoff under simulated worst-case rainfall conditions.
    Wauchope RD; Johnson WC; Sumner HR
    J Agric Food Chem; 2004 Nov; 52(23):7056-63. PubMed ID: 15537318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil.
    Zhao S; Arthur EL; Coats JR
    J Agric Food Chem; 2003 May; 51(10):3043-8. PubMed ID: 12720389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots.
    Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR
    Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence and runoff losses of 3 herbicides and chlorpyrifos from a corn field in the Lake Balaton watershed of Hungary.
    Ferenczi J; Ambrus A; Wauchope RD; Sumner HR
    J Environ Sci Health B; 2002 May; 37(3):211-24. PubMed ID: 12009192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching of atrazine, metolachlor and diuron in the field in relation to their injection depth into a silt loam soil.
    Delphin JE; Chapot JY
    Chemosphere; 2006 Sep; 64(11):1862-9. PubMed ID: 16524619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.
    Gaynor JD; Tan CS; Drury CF; Welacky TW; Ng HY; Reynolds WD
    J Environ Qual; 2002; 31(1):300-8. PubMed ID: 11841063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado.
    Bridges M; Henry WB; Shaner DL; Khosla R; Westra P; Reich R
    J Environ Qual; 2008; 37(6):2212-20. PubMed ID: 18948474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field history and dissipation of atrazine and metolachlor in Colorado.
    Shaner DL; Henry WB
    J Environ Qual; 2007; 36(1):128-34. PubMed ID: 17215220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variability of atrazine dissipation in an allophanic soil.
    Müller K; Smith RE; James TK; Holland PT; Rahman A
    Pest Manag Sci; 2003 Aug; 59(8):893-903. PubMed ID: 12916770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.
    Jaikaew P; Boulange J; Thuyet DQ; Malhat F; Ishihara S; Watanabe H
    Environ Monit Assess; 2015 Dec; 187(12):760. PubMed ID: 26581606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms.
    Mazanti L; Rice C; Bialek K; Sparling D; Stevenson C; Johnson WE; Kangas P; Rheinstein J
    Arch Environ Contam Toxicol; 2003 Jan; 44(1):67-76. PubMed ID: 12434220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.