BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 12926886)

  • 1. Production of cellulose II from native cellulose by near- and supercritical water solubilization.
    Sasaki M; Adschiri T; Arai K
    J Agric Food Chem; 2003 Aug; 51(18):5376-81. PubMed ID: 12926886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in microcrystalline cellulose in subcritical water treatment.
    Tolonen LK; Zuckerstätter G; Penttilä PA; Milacher W; Habicht W; Serimaa R; Kruse A; Sixta H
    Biomacromolecules; 2011 Jul; 12(7):2544-51. PubMed ID: 21644577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions.
    Chen X; Burger C; Wan F; Zhang J; Rong L; Hsiao BS; Chu B; Cai J; Zhang L
    Biomacromolecules; 2007 Jun; 8(6):1918-26. PubMed ID: 17472335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 degrees C and the limit of cellulose dissolution.
    Egal M; Budtova T; Navard P
    Biomacromolecules; 2007 Jul; 8(7):2282-7. PubMed ID: 17571851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity.
    Kumar S; Gupta R; Lee YY; Gupta RB
    Bioresour Technol; 2010 Feb; 101(4):1337-47. PubMed ID: 19818604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution of cellulose into supercritical water and its dissolving state followed by structure formation from the solution system.
    Hirase R; Miyamoto H; Yuguchi Y; Yamane C
    Carbohydr Polym; 2022 Jan; 275():118669. PubMed ID: 34742408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system.
    Ramos LA; Assaf JM; El Seoud OA; Frollini E
    Biomacromolecules; 2005; 6(5):2638-47. PubMed ID: 16153102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions.
    Saito T; Isogai A
    Biomacromolecules; 2004; 5(5):1983-9. PubMed ID: 15360314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of cellulose-starch gel mixtures in water at high-temperatures and pressures for developing continuous batch microreactor systems.
    Ogihara Y; Smith RL; Inomata H; Arai K
    Bioresour Technol; 2008 Jul; 99(10):4338-45. PubMed ID: 17964149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose-based chromatography for cellooligosaccharide production.
    Akpinar O; McGorrin RJ; Penner MH
    J Agric Food Chem; 2004 Jun; 52(13):4144-8. PubMed ID: 15212461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry.
    Kocherbitov V; Ulvenlund S; Kober M; Jarring K; Arnebrant T
    J Phys Chem B; 2008 Mar; 112(12):3728-34. PubMed ID: 18307340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolving cellulose in a NaOH/thiourea aqueous solution: a topochemical investigation.
    Yan L; Chen J; Bangal PR
    Macromol Biosci; 2007 Sep; 7(9-10):1139-48. PubMed ID: 17683109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization.
    Ifuku S; Kadla JF
    Biomacromolecules; 2008 Nov; 9(11):3308-13. PubMed ID: 18937402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose.
    Tolonen LK; Juvonen M; Niemelä K; Mikkelson A; Tenkanen M; Sixta H
    Carbohydr Res; 2015 Jan; 401():16-23. PubMed ID: 25464077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J
    J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH and water-soluble polymers on the aqueous solubility of nimesulide in the absence and presence of beta-cyclodextrin derivatives.
    Alexanian C; Papademou H; Vertzoni M; Archontaki H; Valsami G
    J Pharm Pharmacol; 2008 Nov; 60(11):1433-9. PubMed ID: 18957163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose/water: liquid/gas and liquid/liquid phase equilibria and their consistent modeling.
    Eckelt J; Wolf BA
    Biomacromolecules; 2007 Jun; 8(6):1865-72. PubMed ID: 17521162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphism of cellulose I family: reinvestigation of cellulose IVI.
    Wada M; Heux L; Sugiyama J
    Biomacromolecules; 2004; 5(4):1385-91. PubMed ID: 15244455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.