These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 12926905)
1. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves. Palaniswamy UR; McAvoy RJ; Bible BB; Stuart JD J Agric Food Chem; 2003 Aug; 51(18):5504-9. PubMed ID: 12926905 [TBL] [Abstract][Full Text] [Related]
2. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). Engelen-Eigles G; Holden G; Cohen JD; Gardner G J Agric Food Chem; 2006 Jan; 54(2):328-34. PubMed ID: 16417287 [TBL] [Abstract][Full Text] [Related]
3. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). Kopsell DA; Barickman TC; Sams CE; McElroy JS J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091 [TBL] [Abstract][Full Text] [Related]
4. Cooking has the potential to decrease the antitumor effect of fresh Betong watercress. Aksornthong C; Prutipanlai S; Ruangrut P; Janchawee B J Food Biochem; 2019 Apr; 43(4):e12783. PubMed ID: 31353578 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. Martínez-Sánchez A; Gil-Izquierdo A; Gil MI; Ferreres F J Agric Food Chem; 2008 Apr; 56(7):2330-40. PubMed ID: 18321050 [TBL] [Abstract][Full Text] [Related]
6. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
7. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.). Jeon J; Bong SJ; Park JS; Park YK; Arasu MV; Al-Dhabi NA; Park SU BMC Genomics; 2017 May; 18(1):401. PubMed ID: 28535746 [TBL] [Abstract][Full Text] [Related]
8. Larval performance of the mustard leaf beetle (Phaedon cochleariae, Coleoptera, Chrysomelidae) on white mustard (Sinapis alba) and watercress (Nasturtium officinale) leaves in dependence of plant exposure to ultraviolet radiation. Reifenrath K; Müller C Environ Pollut; 2009 Jul; 157(7):2053-60. PubMed ID: 19278760 [TBL] [Abstract][Full Text] [Related]
9. Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Chung FL; Morse MA; Eklind KI; Lewis J Cancer Epidemiol Biomarkers Prev; 1992; 1(5):383-8. PubMed ID: 1305471 [TBL] [Abstract][Full Text] [Related]
10. In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. Syed Alwi SS; Cavell BE; Telang U; Morris ME; Parry BM; Packham G Br J Nutr; 2010 Nov; 104(9):1288-96. PubMed ID: 20546646 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydroalcoholic extracts of Nasturtium officinale leaves on lipid profile in high-fat diet rats. Bahramikia S; Yazdanparast R J Ethnopharmacol; 2008 Jan; 115(1):116-21. PubMed ID: 17980985 [TBL] [Abstract][Full Text] [Related]
12. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). Duman F; Ozturk F J Environ Sci (China); 2010; 22(4):526-32. PubMed ID: 20617728 [TBL] [Abstract][Full Text] [Related]
13. Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Reifenrath K; Müller C Phytochemistry; 2007 Mar; 68(6):875-85. PubMed ID: 17257632 [TBL] [Abstract][Full Text] [Related]
14. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. Kleinwächter M; Schnug E; Selmar D J Agric Food Chem; 2008 Dec; 56(23):11165-70. PubMed ID: 18986152 [TBL] [Abstract][Full Text] [Related]
15. Metabolic targets of watercress and PEITC in MCF-7 and MCF-10A cells explain differential sensitisation responses to ionising radiation. Giallourou NS; Rowland IR; Rothwell SD; Packham G; Commane DM; Swann JR Eur J Nutr; 2019 Sep; 58(6):2377-2391. PubMed ID: 30066177 [TBL] [Abstract][Full Text] [Related]
16. Elemental distribution and uptake by watercress (Nasturtium aquaticum) as a function of water quality. Kisten K; Gounden D; Moodley R; Jonnalagadda SB J Environ Sci Health B; 2015; 50(6):439-47. PubMed ID: 25844866 [TBL] [Abstract][Full Text] [Related]
17. Differential distribution of leaf chemistry in eucalypt seedlings due to variation in whole-plant nutrient availability. Close DC; McArthur C; Hagerman AE; Fitzgerald H Phytochemistry; 2005 Jan; 66(2):215-21. PubMed ID: 15652578 [TBL] [Abstract][Full Text] [Related]
18. Optimizing environmental conditions for mass application of mechano-dwarfing stimuli to Arabidopsis. Montgomery JA; Bressan RA; Mitchell CA J Am Soc Hortic Sci; 2004 May; 129(3):339-43. PubMed ID: 15776543 [TBL] [Abstract][Full Text] [Related]
19. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Dayalan Naidu S; Suzuki T; Yamamoto M; Fahey JW; Dinkova-Kostova AT Mol Nutr Food Res; 2018 Sep; 62(18):e1700908. PubMed ID: 29710398 [TBL] [Abstract][Full Text] [Related]
20. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Xiao D; Lew KL; Zeng Y; Xiao H; Marynowski SW; Dhir R; Singh SV Carcinogenesis; 2006 Nov; 27(11):2223-34. PubMed ID: 16774948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]