These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12927528)

  • 1. A simulation study of the dynamics of a driven filament in an Aristotelian fluid.
    Lagomarsino MC; Capuani F; Lowe CP
    J Theor Biol; 2003 Sep; 224(2):215-24. PubMed ID: 12927528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floppy swimming: viscous locomotion of actuated elastica.
    Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041916. PubMed ID: 17500930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehinging biflagellar locomotion in a viscous fluid.
    Spagnolie SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046323. PubMed ID: 19905452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling microscopic swimmers at low Reynolds number.
    Earl DJ; Pooley CM; Ryder JF; Bredberg I; Yeomans JM
    J Chem Phys; 2007 Feb; 126(6):064703. PubMed ID: 17313234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer.
    Teran J; Fauci L; Shelley M
    Phys Rev Lett; 2010 Jan; 104(3):038101. PubMed ID: 20366685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedimenting particles and swimming micro-organisms in a rotating fluid.
    Kessler JO; Hill NA; Strittmatter R; Wiseley D
    Adv Space Res; 1998; 21(8-9):1269-75. PubMed ID: 11541381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
    Lecrivain G; Payton C; Slaouti A; Kennedy I
    J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of filaments: modelling the dynamics of driven microfilaments.
    Lowe CP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1543-50. PubMed ID: 14561345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interactions between two swimming bacteria.
    Ishikawa T; Sekiya G; Imai Y; Yamaguchi T
    Biophys J; 2007 Sep; 93(6):2217-25. PubMed ID: 17496014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental investigations of human swimming motions.
    Takagi H; Nakashima M; Sato Y; Matsuuchi K; Sanders RH
    J Sports Sci; 2016 Aug; 34(16):1564-80. PubMed ID: 26699925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.
    Kamal A; Keaveny EE
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30487240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids.
    Binagia JP; Guido CJ; Shaqfeh ESG
    Soft Matter; 2019 Jun; 15(24):4836-4855. PubMed ID: 31155624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of a microscopic artificial swimmer.
    Gauger E; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021907. PubMed ID: 17025472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swimming efficiency in a shear-thinning fluid.
    Nganguia H; Pietrzyk K; Pak OS
    Phys Rev E; 2017 Dec; 96(6-1):062606. PubMed ID: 29347300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-separation models for swimming enhancement in complex fluids.
    Man Y; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023004. PubMed ID: 26382500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.