BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12927719)

  • 1. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669.
    Chen H; Hoover DG
    Int J Food Microbiol; 2003 Oct; 87(1-2):161-71. PubMed ID: 12927719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure.
    Guan D; Chen H; Hoover DG
    Int J Food Microbiol; 2005 Oct; 104(2):145-53. PubMed ID: 16099523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk.
    Pina Pérez MC; Rodrigo Aliaga D; Saucedo Reyes D; Martínez López A
    J Food Prot; 2007 Oct; 70(10):2281-9. PubMed ID: 17969609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure inactivation kinetics of phage lambda cI 857.
    Chen H; Joerger RD; Kingsley DH; Hoover DG
    J Food Prot; 2004 Mar; 67(3):505-11. PubMed ID: 15035365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata).
    Panagou EZ; Tassou CC; Manitsa C; Mallidis C
    J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival and growth of Yersinia enterocolitica strains inoculated in skimmed milk treated with high hydrostatic pressure.
    De Lamo-Castellví S; Roig-Sagués AX; Capellas M; Hernández-Herrero M; Guamis B
    Int J Food Microbiol; 2005 Jul; 102(3):337-42. PubMed ID: 16014300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: a preliminary study.
    Buzrul S; Alpas H
    FEMS Microbiol Lett; 2004 Sep; 238(1):29-36. PubMed ID: 15336399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure.
    Avsaroglu MD; Buzrul S; Alpas H; Akcelik M; Bozoglu F
    Int J Food Microbiol; 2006 Apr; 108(1):78-83. PubMed ID: 16387378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling inactivation of Staphylococcus aureus and Yersinia enterocolitica by high-pressure homogenisation at different temperatures.
    Diels AM; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2003 Oct; 87(1-2):55-62. PubMed ID: 12927707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures.
    Virto R; Sanz D; Alvarez I; Condón ; Raso J
    Int J Food Microbiol; 2005 Sep; 103(3):251-7. PubMed ID: 16099310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of Yersinia enterocolitica strains inoculated in model cheese treated with high hydrostatic pressure.
    De Lamo-Castellví S; Capellas M; López-Pedemonte T; Hernández-Herrero MM; Guamis B; Roig-Sagués AX
    J Food Prot; 2005 Mar; 68(3):528-33. PubMed ID: 15771177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the pressure inactivation of Escherichia coli and Salmonella typhimurium in sapote mamey ( Pouteria sapota (Jacq.) H.E. Moore & Stearn) pulp.
    Saucedo-Reyes D; Carrillo-Salazar JA; Román-Padilla L; Saucedo-Veloz C; Reyes-Santamaría MI; Ramírez-Gilly M; Tecante A
    Food Sci Technol Int; 2018 Mar; 24(2):117-131. PubMed ID: 29050495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive modelling of growth of Yersinia enterocolitica: the effects of temperature, pH and sodium chloride.
    Sutherland JP; Bayliss AJ
    Int J Food Microbiol; 1994 Feb; 21(3):197-215. PubMed ID: 8024973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation as a method to determine the critical factors affecting two strains of Escherichia coli inactivation kinetics by high hydrostatic pressure.
    Pina-Pérez MC; García-Fernández MM; Rodrigo D; Martínez-López A
    Foodborne Pathog Dis; 2010 Apr; 7(4):459-66. PubMed ID: 19958101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. cremoris MG 1363.
    Kilimann KV; Hartmann C; Delgado A; Vogel RF; Gänzle MG
    Int J Food Microbiol; 2005 Jan; 98(1):89-105. PubMed ID: 15617804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the chlorine inactivation of Yersinia enterocolitica in chlorine demand and demand-free systems.
    Virto R; Sanz D; Alvarez I; Condon S; Raso J
    J Food Prot; 2005 Sep; 68(9):1816-22. PubMed ID: 16161679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate.
    Chen H; Hoover DG; Kingsley DH
    J Food Prot; 2005 Nov; 68(11):2389-94. PubMed ID: 16300078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to predicting microbial inactivation kinetics during high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-assisted pressure inactivation of Listeria monocytogenes in turkey breast meat.
    Chen H
    Int J Food Microbiol; 2007 Jun; 117(1):55-60. PubMed ID: 17462773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.