These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12927963)

  • 21. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance.
    Priyanka B; Sekhar K; Reddy VD; Rao KV
    Plant Biotechnol J; 2010 Jan; 8(1):76-87. PubMed ID: 20055960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana.
    Ahn C; Park U; Park PB
    Biochem Biophys Res Commun; 2011 Dec; 415(4):669-74. PubMed ID: 22079289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.).
    Xu DQ; Huang J; Guo SQ; Yang X; Bao YM; Tang HJ; Zhang HS
    FEBS Lett; 2008 Apr; 582(7):1037-43. PubMed ID: 18325341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance.
    Sekhar K; Priyanka B; Reddy VD; Rao KV
    Plant Cell Environ; 2010 Aug; 33(8):1324-38. PubMed ID: 20374537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants.
    Ouyang SQ; Liu YF; Liu P; Lei G; He SJ; Ma B; Zhang WK; Zhang JS; Chen SY
    Plant J; 2010 Apr; 62(2):316-29. PubMed ID: 20128882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sucrose and overexpression of trehalose biosynthetic genes (otsBA) increase desiccation tolerance of recombinant Escherichia coli.
    Miller EN; Ingram LO
    Biotechnol Lett; 2008 Mar; 30(3):503-8. PubMed ID: 17973087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245.
    Huang J; Sun SJ; Xu DQ; Yang X; Bao YM; Wang ZF; Tang HJ; Zhang H
    Biochem Biophys Res Commun; 2009 Nov; 389(3):556-61. PubMed ID: 19751706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.
    Mito T; Seki M; Shinozaki K; Ohme-Takagi M; Matsui K
    Plant Biotechnol J; 2011 Sep; 9(7):736-46. PubMed ID: 21114612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method to confer salinity stress tolerance to plants by helicase overexpression.
    Tuteja N
    Methods Mol Biol; 2010; 587():377-87. PubMed ID: 20225163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trehalose Accumulation Triggers Autophagy during Plant Desiccation.
    Williams B; Njaci I; Moghaddam L; Long H; Dickman MB; Zhang X; Mundree S
    PLoS Genet; 2015 Dec; 11(12):e1005705. PubMed ID: 26633550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The function of trehalose biosynthesis in plants.
    Wingler A
    Phytochemistry; 2002 Jul; 60(5):437-40. PubMed ID: 12052507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of osmoprotectant accumulation in plants.
    Rontein D; Basset G; Hanson AD
    Metab Eng; 2002 Jan; 4(1):49-56. PubMed ID: 11800574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin.
    Pampurova S; Verschooten K; Avonce N; Van Dijck P
    J Plant Res; 2014 Nov; 127(6):803-13. PubMed ID: 25246071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant Drought Tolerance Enhancement by Trehalose Production of Desiccation-Tolerant Microorganisms.
    Vílchez JI; García-Fontana C; Román-Naranjo D; González-López J; Manzanera M
    Front Microbiol; 2016; 7():1577. PubMed ID: 27746776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes.
    Chen TH; Murata N
    Curr Opin Plant Biol; 2002 Jun; 5(3):250-7. PubMed ID: 11960744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal.
    Srivastava S; Suprasanna P; D'Souza SF
    Int J Phytoremediation; 2012; 14(5):506-17. PubMed ID: 22567728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants.
    Delorge I; Janiak M; Carpentier S; Van Dijck P
    Front Plant Sci; 2014; 5():147. PubMed ID: 24782885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Construction of a recombinant Escherichia coli for high trehalose production].
    Gao C; Zhang S; He Y; Huang J; Dong Z
    Sheng Wu Gong Cheng Xue Bao; 2015 Dec; 31(12):1784-8. PubMed ID: 27093841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trehalose production: exploiting novel approaches.
    Schiraldi C; Di Lernia I; De Rosa M
    Trends Biotechnol; 2002 Oct; 20(10):420-5. PubMed ID: 12220904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A time and a place for sugar in your ears.
    Guan JC; Koch KE
    Nat Biotechnol; 2015 Aug; 33(8):827-8. PubMed ID: 26252140
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.