BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 12928482)

  • 41. Mapping the distribution of chromatin proteins by ChIP on chip.
    Nègre N; Lavrov S; Hennetin J; Bellis M; Cavalli G
    Methods Enzymol; 2006; 410():316-41. PubMed ID: 16938558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer.
    van Duin M; van Marion R; Vissers K; Watson JE; van Weerden WM; Schröder FH; Hop WC; van der Kwast TH; Collins C; van Dekken H
    Genes Chromosomes Cancer; 2005 Dec; 44(4):438-49. PubMed ID: 16130124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct cloning of human 10q25 neocentromere DNA using transformation-associated recombination (TAR) in yeast.
    Cancilla MR; Tainton KM; Barry AE; Larionov V; Kouprina N; Resnick MA; Sart DD; Choo KH
    Genomics; 1998 Feb; 47(3):399-404. PubMed ID: 9480754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Class II neocentromeres: a putative common neocentromere site in band 4q21.2.
    Warburton PC; Barwell J; Splitt M; Maxwell D; Bint S; Ogilvie CM
    Eur J Hum Genet; 2003 Oct; 11(10):749-53. PubMed ID: 14512964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CpG methylation of the CENP-B box reduces human CENP-B binding.
    Tanaka Y; Kurumizaka H; Yokoyama S
    FEBS J; 2005 Jan; 272(1):282-9. PubMed ID: 15634350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of neocentromere-based human minichromosomes for gene delivery and centromere studies.
    Wong LH; Saffery R; Choo KH
    Gene Ther; 2002 Jun; 9(11):724-6. PubMed ID: 12032696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neocentromeres form efficiently at multiple possible loci in Candida albicans.
    Ketel C; Wang HS; McClellan M; Bouchonville K; Selmecki A; Lahav T; Gerami-Nejad M; Berman J
    PLoS Genet; 2009 Mar; 5(3):e1000400. PubMed ID: 19266018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolutionary and clinical neocentromeres: two faces of the same coin?
    Capozzi O; Purgato S; Verdun di Cantogno L; Grosso E; Ciccone R; Zuffardi O; Della Valle G; Rocchi M
    Chromosoma; 2008 Aug; 117(4):339-44. PubMed ID: 18274768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C.
    Italiano A; Attias R; Aurias A; Pérot G; Burel-Vandenbos F; Otto J; Venissac N; Pedeutour F
    Cancer Genet Cytogenet; 2006 Jun; 167(2):122-30. PubMed ID: 16737911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer.
    Ballestar E; Paz MF; Valle L; Wei S; Fraga MF; Espada J; Cigudosa JC; Huang TH; Esteller M
    EMBO J; 2003 Dec; 22(23):6335-45. PubMed ID: 14633992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of an analphoid supernumerary marker chromosome derived from 15q25-->qter using high-resolution CGH and multiplex FISH analyses.
    Huang XL; de Michelena MI; Mark H; Harston R; Benke PJ; Price SJ; Milunsky A
    Clin Genet; 2005 Dec; 68(6):513-9. PubMed ID: 16283881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable.
    Alazami AM; Mejía JE; Monaco ZL
    Genomics; 2004 May; 83(5):844-51. PubMed ID: 15081114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary new centromeres in primates.
    Rocchi M; Stanyon R; Archidiacono N
    Prog Mol Subcell Biol; 2009; 48():103-52. PubMed ID: 19521814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sister chromatid separation at human telomeric regions.
    Yalon M; Gal S; Segev Y; Selig S; Skorecki KL
    J Cell Sci; 2004 Apr; 117(Pt 10):1961-70. PubMed ID: 15039457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs.
    Cardone MF; Alonso A; Pazienza M; Ventura M; Montemurro G; Carbone L; de Jong PJ; Stanyon R; D'Addabbo P; Archidiacono N; She X; Eichler EE; Warburton PE; Rocchi M
    Genome Biol; 2006; 7(10):R91. PubMed ID: 17040560
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions.
    Nishimura K; Komiya M; Hori T; Itoh T; Fukagawa T
    J Cell Biol; 2019 Jan; 218(1):134-149. PubMed ID: 30396998
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CENP-G in neocentromeres and inactive centromeres.
    Gimelli G; Zuffardi O; Giglio S; Zeng C; He D
    Chromosoma; 2000; 109(5):328-33. PubMed ID: 11007491
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog.
    Thomas R; Duke SE; Bloom SK; Breen TE; Young AC; Feiste E; Seiser EL; Tsai PC; Langford CF; Ellis P; Karlsson EK; Lindblad-Toh K; Breen M
    J Hered; 2007; 98(5):474-84. PubMed ID: 17702974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.