These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 12928906)
1. Blood-brain barrier changes during invasion of the central nervous system by HIV-1. Old and new insights into the mechanism. Annunziata P J Neurol; 2003 Aug; 250(8):901-6. PubMed ID: 12928906 [TBL] [Abstract][Full Text] [Related]
2. [Lesions of the central nervous system in the early stages of human immunodeficiency virus infection]. Gray F Rev Neurol (Paris); 1997 Nov; 153(11):629-40. PubMed ID: 9686250 [TBL] [Abstract][Full Text] [Related]
3. Permeability of the blood-brain barrier to HIV-1 Tat. Banks WA; Robinson SM; Nath A Exp Neurol; 2005 May; 193(1):218-27. PubMed ID: 15817280 [TBL] [Abstract][Full Text] [Related]
4. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Price TO; Ercal N; Nakaoke R; Banks WA Brain Res; 2005 May; 1045(1-2):57-63. PubMed ID: 15910762 [TBL] [Abstract][Full Text] [Related]
5. Feline immunodeficiency virus infection: a valuable model to study HIV-1 associated encephalitis. Fletcher NF; Brayden DJ; Brankin B; Callanan JJ Vet Immunol Immunopathol; 2008 May; 123(1-2):134-7. PubMed ID: 18289700 [TBL] [Abstract][Full Text] [Related]
6. Simian immunodeficiency virus disrupts extended lengths of the blood--brain barrier. Maclean AG; Belenchia GE; Bieniemy DN; Moroney-Rasmussen TA; Lackner AA J Med Primatol; 2005 Oct; 34(5-6):237-42. PubMed ID: 16128918 [TBL] [Abstract][Full Text] [Related]
7. Virus replication and disease progression inversely correlate with SIV tat evolution in morphine-dependent and SIV/SHIV-infected Indian rhesus macaques. Noel RJ; Kumar A Virology; 2006 Mar; 346(1):127-38. PubMed ID: 16313937 [TBL] [Abstract][Full Text] [Related]
9. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Xu R; Feng X; Xie X; Zhang J; Wu D; Xu L Brain Res; 2012 Feb; 1436():13-9. PubMed ID: 22197032 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the species barrier of human immunodeficiency virus-1 does not extend to uptake by the blood--brain barrier: comparison of mouse and human brain microvessels. Banks WA; Kumar VB; Franko MW; Bess JW; Arthur LO Life Sci; 2005 Sep; 77(19):2361-8. PubMed ID: 15946698 [TBL] [Abstract][Full Text] [Related]
11. Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death. Matarrese P; Malorni W Cell Death Differ; 2005 Aug; 12 Suppl 1():932-41. PubMed ID: 15818415 [TBL] [Abstract][Full Text] [Related]
12. Effects of the HIV-1 viral protein TAT on central neurotransmission: role of group I metabotropic glutamate receptors. Neri E; Musante V; Pittaluga A Int Rev Neurobiol; 2007; 82():339-56. PubMed ID: 17678970 [TBL] [Abstract][Full Text] [Related]
13. A review of HIV-1 Tat protein biological effects. Pugliese A; Vidotto V; Beltramo T; Petrini S; Torre D Cell Biochem Funct; 2005; 23(4):223-7. PubMed ID: 15473004 [TBL] [Abstract][Full Text] [Related]
14. From viral infection to pulmonary arterial hypertension: a role for viral proteins? Voelkel NF; Cool CD; Flores S AIDS; 2008 Sep; 22 Suppl 3():S49-53. PubMed ID: 18845922 [TBL] [Abstract][Full Text] [Related]
15. Neutralization sensitivity of a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2N) isolated from an infected rhesus macaque with neurological disease. Song B; Cayabyab M; Phan N; Wang L; Axthelm MK; Letvin NL; Sodroski JG Virology; 2004 Apr; 322(1):168-81. PubMed ID: 15063126 [TBL] [Abstract][Full Text] [Related]
16. Fusion of the upstream vpu sequences to the env of simian human immunodeficiency virus (SHIV(KU-1bMC33)) results in the synthesis of two envelope precursor proteins, increased numbers of virus particles associated with the cell surface and is pathogenic for pig-tailed macaques. Hout DR; Gomez ML; Pacyniak E; Mulcahy ER; Gomez LM; Jackson M; Flick M; Fegley B; McCormick C; Wisdom BJ; Culley N; Pinson DM; Powers M; Wong SW; Stephens EB Virology; 2004 May; 323(1):91-107. PubMed ID: 15165822 [TBL] [Abstract][Full Text] [Related]
17. Construction of a doxycycline-dependent simian immunodeficiency virus reveals a nontranscriptional function of tat in viral replication. Das AT; Klaver B; Harwig A; Vink M; Ooms M; Centlivre M; Berkhout B J Virol; 2007 Oct; 81(20):11159-69. PubMed ID: 17670816 [TBL] [Abstract][Full Text] [Related]
18. The HIV-1 Tat transactivator protein: a therapeutic target? Fulcher AJ; Jans DA IUBMB Life; 2003 Dec; 55(12):669-80. PubMed ID: 14769003 [TBL] [Abstract][Full Text] [Related]
19. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Kramer-Hämmerle S; Rothenaigner I; Wolff H; Bell JE; Brack-Werner R Virus Res; 2005 Aug; 111(2):194-213. PubMed ID: 15885841 [TBL] [Abstract][Full Text] [Related]
20. Maedi-visna virus and its relationship to human immunodeficiency virus. Thormar H AIDS Rev; 2005; 7(4):233-45. PubMed ID: 16425963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]