These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12929379)

  • 1. HIV-1 protease: mechanism and drug discovery.
    Brik A; Wong CH
    Org Biomol Chem; 2003 Jan; 1(1):5-14. PubMed ID: 12929379
    [No Abstract]   [Full Text] [Related]  

  • 2. HIV-1 protease folding and the design of drugs which do not create resistance.
    Broglia R; Levy Y; Tiana G
    Curr Opin Struct Biol; 2008 Feb; 18(1):60-6. PubMed ID: 18160276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug-resistant mutations of HIV protease.
    Ishikita H; Warshel A
    Angew Chem Int Ed Engl; 2008; 47(4):697-700. PubMed ID: 18058968
    [No Abstract]   [Full Text] [Related]  

  • 4. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance.
    Stoffler D; Sanner MF; Morris GM; Olson AJ; Goodsell DS
    Proteins; 2002 Jul; 48(1):63-74. PubMed ID: 12012338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical model of HIV-1 protease drug resistance.
    Goodsell DS
    Appl Bioinformatics; 2002; 1(1):3-12. PubMed ID: 15130852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic polyhedral metallacarborane inhibitors of HIV protease: a new approach to overcoming antiviral resistance.
    Kozísek M; Cígler P; Lepsík M; Fanfrlík J; Rezácová P; Brynda J; Pokorná J; Plesek J; Grüner B; Grantz Sasková K; Václavíková J; Král V; Konvalinka J
    J Med Chem; 2008 Aug; 51(15):4839-43. PubMed ID: 18598016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel HIV-1 protease inhibitors active against multiple PI-resistant viral strains: coadministration with indinavir.
    Kevin NJ; Duffy JL; Kirk BA; Chapman KT; Schleif WA; Olsen DB; Stahlhut M; Rutkowski CA; Kuo LC; Jin L; Lin JH; Emini EA; Tata JR
    Bioorg Med Chem Lett; 2003 Nov; 13(22):4027-30. PubMed ID: 14592500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for increased susceptibility of isolates with atazanavir resistance-conferring substitution I50L to other protease inhibitors.
    Yanchunas J; Langley DR; Tao L; Rose RE; Friborg J; Colonno RJ; Doyle ML
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3825-32. PubMed ID: 16127059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 protease: structure, dynamics, and inhibition.
    Louis JM; Ishima R; Torchia DA; Weber IT
    Adv Pharmacol; 2007; 55():261-98. PubMed ID: 17586318
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural mechanisms of HIV drug resistance.
    Erickson JW; Burt SK
    Annu Rev Pharmacol Toxicol; 1996; 36():545-71. PubMed ID: 8725401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges.
    Voshavar C
    Curr Top Med Chem; 2019; 19(18):1571-1598. PubMed ID: 31237209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting structural flexibility in HIV-1 protease inhibitor binding.
    Hornak V; Simmerling C
    Drug Discov Today; 2007 Feb; 12(3-4):132-8. PubMed ID: 17275733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease.
    Sperka T; Pitlik J; Bagossi P; Tözsér J
    Bioorg Med Chem Lett; 2005 Jun; 15(12):3086-90. PubMed ID: 15893929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance.
    Ghosh AK; Chapsal BD; Weber IT; Mitsuya H
    Acc Chem Res; 2008 Jan; 41(1):78-86. PubMed ID: 17722874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate envelope and drug resistance: crystal structure of RO1 in complex with wild-type human immunodeficiency virus type 1 protease.
    Prabu-Jeyabalan M; King NM; Nalivaika EA; Heilek-Snyder G; Cammack N; Schiffer CA
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1518-21. PubMed ID: 16569872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors.
    Codoñer FM; Peña R; Blanch-Lombarte O; Jimenez-Moyano E; Pino M; Vollbrecht T; Clotet B; Martinez-Picado J; Draenert R; Prado JG
    Sci Rep; 2017 Jun; 7(1):3717. PubMed ID: 28623276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug resistance of HIV-1 protease against JE-2147: I47V mutation investigated by molecular dynamics simulation.
    Bandyopadhyay P; Meher BR
    Chem Biol Drug Des; 2006 Feb; 67(2):155-61. PubMed ID: 16492163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site.
    Torbeev VY; Mandal K; Terechko VA; Kent SB
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4554-7. PubMed ID: 18657969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular modeling in the battle against AIDS. Drugs design in the development of substrate-like HIV protease inhibitors].
    Klebe G
    Pharm Unserer Zeit; 2001; 30(3):194-201. PubMed ID: 11400666
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.