These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 12929379)

  • 41. Design of tight-binding human immunodeficiency virus type 1 protease inhibitors.
    Vacca JP
    Methods Enzymol; 1994; 241():311-34. PubMed ID: 7854186
    [No Abstract]   [Full Text] [Related]  

  • 42. Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides.
    Bowman MJ; Chmielewski J
    Biopolymers; 2002; 66(2):126-33. PubMed ID: 12325162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HIV protease inhibitors: their anti-HIV activity and potential role in treatment.
    Robins T; Plattner J
    J Acquir Immune Defic Syndr (1988); 1993 Feb; 6(2):162-70. PubMed ID: 8433280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a novel screen for protease inhibitors.
    Gillim L; Gusella GL; Vargas J; Marras D; Klotman ME; Cara A
    Clin Diagn Lab Immunol; 2001 Mar; 8(2):437-40. PubMed ID: 11238235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and synthesis of novel P2 substituents in diol-based HIV protease inhibitors.
    Adrian Meredith J; Wallberg H; Vrang L; Oscarson S; Parkes K; Hallberg A; Samuelsson B
    Eur J Med Chem; 2010 Jan; 45(1):160-70. PubMed ID: 19926360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting the HIV-protease in AIDS therapy: a current clinical perspective.
    Tomasselli AG; Heinrikson RL
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):189-214. PubMed ID: 10708858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia.
    Batista PR; Wilter A; Durham EH; Pascutti PG
    Cell Biochem Biophys; 2006; 44(3):395-404. PubMed ID: 16679526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The HIV-1 protease as a therapeutic target for AIDS.
    Debouck C
    AIDS Res Hum Retroviruses; 1992 Feb; 8(2):153-64. PubMed ID: 1540403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs.
    Lunney EA; Hagen SE; Domagala JM; Humblet C; Kosinski J; Tait BD; Warmus JS; Wilson M; Ferguson D; Hupe D
    J Med Chem; 1994 Aug; 37(17):2664-77. PubMed ID: 8064795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibitors of HIV-1 protease.
    Meek TD
    J Enzyme Inhib; 1992; 6(1):65-98. PubMed ID: 1285304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constraints on the sequence diversity of the protease of human immunodeficiency virus type 1: a guide for drug design.
    Kaplan AH
    AIDS Res Hum Retroviruses; 1996 Jul; 12(10):849-53. PubMed ID: 8798968
    [No Abstract]   [Full Text] [Related]  

  • 53. Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir.
    Hoetelmans RM; Meenhorst PL; Mulder JW; Burger DM; Koks CH; Beijnen JH
    Pharm World Sci; 1997 Aug; 19(4):159-75. PubMed ID: 9297727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding HIV protease: can it be translated into effective therapy against AIDS?
    Tang J; Lin Y; Co E; Hartsuck JA; Lin X
    Scand J Clin Lab Invest Suppl; 1992; 210():127-35. PubMed ID: 1455175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites.
    Fehér A; Weber IT; Bagossi P; Boross P; Mahalingam B; Louis JM; Copeland TD; Torshin IY; Harrison RW; Tözsér J
    Eur J Biochem; 2002 Aug; 269(16):4114-20. PubMed ID: 12180988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and synthesis of sulfoximine based inhibitors for HIV-1 protease.
    Raza A; Sham YY; Vince R
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5406-10. PubMed ID: 18829317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The synthesis of symmetrical and unsymmetrical P1/P1' cyclic ureas as HIV protease inhibitors.
    Patel M; Kaltenbach RF; Nugiel DA; McHugh RJ; Jadhav PK; Bacheler LT; Cordova BC; Klabe RM; Erickson-Viitanen S; Garber S; Reid C; Seitz SP
    Bioorg Med Chem Lett; 1998 May; 8(9):1077-82. PubMed ID: 9871711
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HIV protease: a novel chemotherapeutic target for AIDS.
    Huff JR
    J Med Chem; 1991 Aug; 34(8):2305-14. PubMed ID: 1875332
    [No Abstract]   [Full Text] [Related]  

  • 59. Design and synthesis of HIV-1 protease inhibitors. Novel tetrahydrofuran P2/P2'-groups interacting with Asp29/30 of the HIV-1 protease. Determination of binding from X-ray crystal structure of inhibitor protease complex.
    Oscarsson K; Lahmann M; Lindberg J; Kangasmetsä J; Unge T; Oscarson S; Hallberg A; Samuelsson B
    Bioorg Med Chem; 2003 Mar; 11(6):1107-15. PubMed ID: 12614898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HIV-1 protease: maturation, enzyme specificity, and drug resistance.
    Louis JM; Weber IT; Tözsér J; Clore GM; Gronenborn AM
    Adv Pharmacol; 2000; 49():111-46. PubMed ID: 11013762
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.