These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 12929381)
1. Detection of a metallo-beta-lactamase (IMP-1) by fluorescent probes having dansyl and thiol groups. Kurosaki H; Yasuzawa H; Yamaguchi Y; Jin W; Arakawa Y; Goto M Org Biomol Chem; 2003 Jan; 1(1):17-20. PubMed ID: 12929381 [TBL] [Abstract][Full Text] [Related]
2. Probing, inhibition, and crystallographic characterization of metallo-beta-lactamase (IMP-1) with fluorescent agents containing dansyl and thiol groups. Kurosaki H; Yamaguchi Y; Yasuzawa H; Jin W; Yamagata Y; Arakawa Y ChemMedChem; 2006 Sep; 1(9):969-72. PubMed ID: 16937423 [No Abstract] [Full Text] [Related]
3. Specific detection of IMP-1 β-lactamase activity using a Hu L; Liu R; Ma Z; Yu T; Li Z; Zou Y; Yuan C; Chen F; Xie H Chem Commun (Camb); 2021 Dec; 57(99):13586-13589. PubMed ID: 34847209 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Concha NO; Janson CA; Rowling P; Pearson S; Cheever CA; Clarke BP; Lewis C; Galleni M; Frère JM; Payne DJ; Bateson JH; Abdel-Meguid SS Biochemistry; 2000 Apr; 39(15):4288-98. PubMed ID: 10757977 [TBL] [Abstract][Full Text] [Related]
5. X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3-aminophthalic acid derivative, structure-based drug design, and synthesis of 3,6-disubstituted phthalic acid derivative inhibitors. Hiraiwa Y; Saito J; Watanabe T; Yamada M; Morinaka A; Fukushima T; Kudo T Bioorg Med Chem Lett; 2014 Oct; 24(20):4891-4. PubMed ID: 25246278 [TBL] [Abstract][Full Text] [Related]
6. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases. Siemann S; Clarke AJ; Viswanatha T; Dmitrienko GI Biochemistry; 2003 Feb; 42(6):1673-83. PubMed ID: 12578382 [TBL] [Abstract][Full Text] [Related]
7. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection. Mao W; Xia L; Wang Y; Xie H Chem Asian J; 2016 Dec; 11(24):3493-3497. PubMed ID: 27790857 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Arjomandi OK; Hussein WM; Vella P; Yusof Y; Sidjabat HE; Schenk G; McGeary RP Eur J Med Chem; 2016 May; 114():318-27. PubMed ID: 27017264 [TBL] [Abstract][Full Text] [Related]
9. A carbapenem-based fluorescence assay for the screening of metallo-β-lactamase inhibitors. Qian X; Zhang S; Xue S; Mao W; Xu M; Xu W; Xie H Bioorg Med Chem Lett; 2019 Jan; 29(2):322-325. PubMed ID: 30470495 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of the Enterobacter cloacae P99 beta-lactamase by a fluorescent phosphonate: direct detection of ligand binding at the second site. Dryjanski M; Pratt RF Biochemistry; 1995 Mar; 34(11):3569-75. PubMed ID: 7893653 [TBL] [Abstract][Full Text] [Related]
11. Iron(III) located in the dinuclear metallo-β-lactamase IMP-1 by pseudocontact shifts. Carruthers TJ; Carr PD; Loh CT; Jackson CJ; Otting G Angew Chem Int Ed Engl; 2014 Dec; 53(51):14269-72. PubMed ID: 25320022 [TBL] [Abstract][Full Text] [Related]
12. Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. Pellegrini C; Mercuri PS; Celenza G; Galleni M; Segatore B; Sacchetti E; Volpe R; Amicosante G; Perilli M J Antimicrob Chemother; 2009 May; 63(5):901-8. PubMed ID: 19270313 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of the MALDI Biotyper Selective Testing of Antibiotic Resistance-β-Lactamase (MBT STAR-BL) assay for the detection of IMP metallo-β-lactamase activity in Enterobacteriaceae. Kawamoto Y; Kosai K; Yamakawa H; Kaku N; Uno N; Morinaga Y; Hasegawa H; Miyazaki T; Izumikawa K; Mukae H; Yanagihara K Diagn Microbiol Infect Dis; 2018 Dec; 92(4):275-278. PubMed ID: 30041842 [TBL] [Abstract][Full Text] [Related]
14. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. Shakibaie MR; Azizi O; Shahcheraghi F Infect Genet Evol; 2017 Jul; 51():118-126. PubMed ID: 28336429 [TBL] [Abstract][Full Text] [Related]
15. Captopril analogues as metallo-β-lactamase inhibitors. Yusof Y; Tan DTC; Arjomandi OK; Schenk G; McGeary RP Bioorg Med Chem Lett; 2016 Mar; 26(6):1589-1593. PubMed ID: 26883147 [TBL] [Abstract][Full Text] [Related]
16. A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-β-lactamases. Chen C; Xiang Y; Yang KW; Zhang Y; Wang WM; Su JP; Ge Y; Liu Y Chem Commun (Camb); 2018 May; 54(38):4802-4805. PubMed ID: 29687124 [TBL] [Abstract][Full Text] [Related]
17. Direct screening of the IMP-1 metallo-beta-lactamase gene (blaIMP) from urine samples by polymerase chain reaction. Katsuno S; Takashi M; Ohshima S; Ohta M; Kato N; Kurokawa H; Arakawa Y Int J Urol; 2001 Mar; 8(3):110-7. PubMed ID: 11260335 [TBL] [Abstract][Full Text] [Related]
19. Chelator-facilitated chemical modification of IMP-1 metallo-beta-lactamase and its consequences on metal binding. Gardonio D; Siemann S Biochem Biophys Res Commun; 2009 Mar; 381(1):107-11. PubMed ID: 19351604 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of commercial phenotypic assays for the detection of IMP- or New Delhi metallo-β-lactamase-producing Enterobacteriaceae isolates in Japan. Sakanashi D; Kawachi M; Uozumi Y; Nishio M; Hara Y; Suematsu H; Hagihara M; Nishiyama N; Asai N; Koizumi Y; Yamagishi Y; Mikamo H J Infect Chemother; 2017 Jul; 23(7):474-480. PubMed ID: 28456489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]