These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12929407)

  • 1. Hydride-exchange reactions between NADH and NAD+ model compounds under non-steady-state conditions. Apparent and real kinetic isotope effects.
    Lu Y; Zhao Y; Handoo KL; Parker VD
    Org Biomol Chem; 2003 Jan; 1(1):173-81. PubMed ID: 12929407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-initiated chain mechanism for hydride transfer between NADH and NAD+ models. Reaction of 1-benzyl-3-cyanoquinolinium ion with N-methyl-9,10-dihydroacridine in acetonitrile.
    Hao W; Parker VD
    J Org Chem; 2012 Oct; 77(20):9286-97. PubMed ID: 23025304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-transfer reactions between nitroalkanes and hydroxide ion under non-steady-state conditions. Apparent and real kinetic isotope effects.
    Zhao Y; Lu Y; Parker VD
    J Am Chem Soc; 2001 Feb; 123(8):1579-86. PubMed ID: 11456756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular kinetic isotope effect in hydride transfer from dihydroacridine to a quinolinium ion. Rejection of a proposed two-step mechanism with a kinetically significant intermediate.
    Perrin CL; Zhao C
    Org Biomol Chem; 2008 Sep; 6(18):3349-53. PubMed ID: 18802641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer reactions of methylanthracene radical cations with pyridine bases under non-steady-state conditions. Real kinetic isotope effect evidence for extensive tunneling.
    Lu Y; Zhao Y; Parker VD
    J Am Chem Soc; 2001 Jun; 123(25):5900-7. PubMed ID: 11414822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction.
    Agrawal N; Hong B; Mihai C; Kohen A
    Biochemistry; 2004 Feb; 43(7):1998-2006. PubMed ID: 14967040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication of the Enzymatic Temperature Dependency of the Primary Hydride Kinetic Isotope Effects in Solution: Caused by the Protein-Controlled Rigidity of the Donor-Acceptor Centers?
    Lu Y; Wilhelm S; Bai M; Maness P; Ma L
    Biochemistry; 2019 Oct; 58(39):4035-4046. PubMed ID: 31478638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scandium ion-promoted reduction of heterocyclic N=N double bond. Hydride transfer vs electron transfer.
    Fukuzumi S; Yuasa J; Suenobu T
    J Am Chem Soc; 2002 Oct; 124(42):12566-73. PubMed ID: 12381201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism?
    Zhu XQ; Mu YY; Li XT
    J Phys Chem B; 2011 Dec; 115(49):14794-811. PubMed ID: 22035071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tightness contribution to the Brønsted alpha for hydride transfer between NAD+ analogues.
    Lee IS; Chow KH; Kreevoy MM
    J Am Chem Soc; 2002 Jul; 124(26):7755-61. PubMed ID: 12083929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic and kinetic study of hydride transfer of a caffeine derivative.
    Han X; Hao W; Zhu XQ; Parker VD
    J Org Chem; 2012 Aug; 77(15):6520-9. PubMed ID: 22758906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Nonalkaline Media.
    Yang JD; Chen BL; Zhu XQ
    J Phys Chem B; 2018 Jul; 122(27):6888-6898. PubMed ID: 29886742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.