These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12929410)

  • 1. Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems.
    Baiocco P; Barreca AM; Fabbrini M; Galli C; Gentili P
    Org Biomol Chem; 2003 Jan; 1(1):191-7. PubMed ID: 12929410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of oxidation of benzyl alcohols by the dication and radical cation of ABTS. Comparison with laccase-ABTS oxidations: an apparent paradox.
    Branchi B; Galli C; Gentili P
    Org Biomol Chem; 2005 Jul; 3(14):2604-14. PubMed ID: 15999194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds.
    Bourbonnais R; Leech D; Paice MG
    Biochim Biophys Acta; 1998 Mar; 1379(3):381-90. PubMed ID: 9545600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Bioeng; 2005 Jul; 91(1):114-23. PubMed ID: 15889399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.
    Qi YB; Wang XL; Shi T; Liu S; Xu ZH; Li X; Shi X; Xu P; Zhao YL
    Phys Chem Chem Phys; 2015 Nov; 17(44):29597-607. PubMed ID: 26477512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-triggered radical reactions: another approach for tin-free radical chemistry.
    Cissokho I; Farnet AM; Ferré E; Bertrand MP; Gil G; Gastaldi S
    Chimia (Aarau); 2012; 66(6):435-8. PubMed ID: 22871289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple.
    Hirai H; Shibata H; Kawai S; Nishida T
    FEMS Microbiol Lett; 2006 Dec; 265(1):56-9. PubMed ID: 17038050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoselective C-4 aerobic oxidation of catechin derivatives catalyzed by the Trametes villosa laccase/1-hydroxybenzotriazole system: synthetic and mechanistic aspects.
    Bernini R; Crisante F; Gentili P; Morana F; Pierini M; Piras M
    J Org Chem; 2011 Feb; 76(3):820-32. PubMed ID: 21204551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres?
    Aracri E; Colom JF; Vidal T
    Bioresour Technol; 2009 Dec; 100(23):5911-6. PubMed ID: 19574042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.
    Hilgers R; Vincken JP; Gruppen H; Kabel MA
    ACS Sustain Chem Eng; 2018 Feb; 6(2):2037-2046. PubMed ID: 29430340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into the oxidation of sinapic acid by CotA laccase.
    Xie T; Liu Z; Liu Q; Wang G
    J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase.
    Jeon JR; Murugesan K; Kim YM; Kim EJ; Chang YS
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):783-90. PubMed ID: 18987855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable stoichiometry during the laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2007; 23(2):389-97. PubMed ID: 17315888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.