BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12929497)

  • 21. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).
    Cojocaru P; Gusiatin ZM; Cretescu I
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.
    Lai HY; Juang KW; Chen ZS
    Int J Phytoremediation; 2010; 12(8):785-97. PubMed ID: 21166348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.
    Ok YS; Usman AR; Lee SS; Abd El-Azeem SA; Choi B; Hashimoto Y; Yang JE
    Chemosphere; 2011 Oct; 85(4):677-82. PubMed ID: 21764102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils.
    Hao X; Zhou D; Wang Y; Shi F; Jiang P
    Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis.
    Nehnevajova E; Herzig R; Federer G; Erismann KH; Schwitzguébel JP
    Int J Phytoremediation; 2005; 7(4):337-49. PubMed ID: 16463545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation.
    Barocsi A; Csintalan Z; Kocsanyi L; Dushenkov S; Kuperberg JM; Kucharski R; Richter PI
    Int J Phytoremediation; 2003; 5(1):13-23. PubMed ID: 12710232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil.
    Cutright T; Gunda N; Kurt F
    Int J Phytoremediation; 2010 Aug; 12(6):562-73. PubMed ID: 21166281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil.
    Trakal L; Komárek M; Száková J; Tlustos P; Tejnecký V; Drábek O
    Int J Phytoremediation; 2012 Sep; 14(8):806-19. PubMed ID: 22908646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.
    Hassan SE; Hijri M; St-Arnaud M
    N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution and accumulation of copper, lead, zinc, and cadmium contaminants in Elsholtzia splendens grown in the metal contaminated soil: a field trial study.
    Peng HY; Yang XE
    Bull Environ Contam Toxicol; 2005 Dec; 75(6):1115-22. PubMed ID: 16402300
    [No Abstract]   [Full Text] [Related]  

  • 36. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties.
    Cao X; Wang X; Tong W; Gurajala HK; Lu M; Hamid Y; Feng Y; He Z; Yang X
    Environ Pollut; 2019 Sep; 252(Pt A):733-741. PubMed ID: 31200201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of amendments of N, P, Fe on phytoextraction of Cd, Pb, Cu, and Zn in soil of Zhangshi by mustard, cabbage, and sugar beet.
    Sun L; Niu Z; Sun T
    Environ Toxicol; 2007 Dec; 22(6):565-71. PubMed ID: 18000847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.
    Zaier H; Ghnaya T; Ben Rejeb K; Lakhdar A; Rejeb S; Jemal F
    Bioresour Technol; 2010 Jun; 101(11):3978-83. PubMed ID: 20129779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass.
    Lai HY; Chen ZS
    Chemosphere; 2004 Apr; 55(3):421-30. PubMed ID: 14987941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant availability of zinc and copper in soil after contamination with brass foundry filter dust: effect of four years of aging.
    Hilber I; Voegelin A; Barmettler K; Kretzschmar R
    J Environ Qual; 2007; 36(1):44-52. PubMed ID: 17215211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.