BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12929655)

  • 1. Substituted tren-capped porphyrins: probing the influence of copper in synthetic models of cytochrome c oxidase.
    Didier A; L'Her M; Boitrel B
    Org Biomol Chem; 2003 Apr; 1(8):1274-6. PubMed ID: 12929655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of 3-quinolinoyl picket porphyrins to the electroreduction of dioxygen to water: mimicking the active site of cytochrome c oxidase.
    Ricard D; Didier A; L'Her M; Boitrel B
    Chembiochem; 2001 Feb; 2(2):144-8. PubMed ID: 11828439
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase.
    Liu JG; Naruta Y; Tani F; Chishiro T; Tachi Y
    Chem Commun (Camb); 2004 Jan; (1):120-1. PubMed ID: 14737361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dioxygen binding of water-soluble iron(II) porphyrins in phosphate buffer at room temperature.
    Ruzié C; Even P; Boitrel B
    Org Biomol Chem; 2007 May; 5(10):1601-4. PubMed ID: 17571190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron porphyrins as models of cytochrome c oxidase.
    Ricard D; L'Her M; Richard P; Boitrel B
    Chemistry; 2001 Aug; 7(15):3291-7. PubMed ID: 11531114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appending a tris-imidazole ligand with a Tyr 244 mimic on the distal face of bromoacetamidoporphyrin.
    Collman JP; Decréau RA; Costanzo S
    Org Lett; 2004 Mar; 6(6):1033-6. PubMed ID: 15012093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electron availability on selectivity of O2 reduction by synthetic monometallic Fe porphyrins.
    Collman JP; Shiryaeva IM; Boulatov R
    Inorg Chem; 2003 Aug; 42(16):4807-9. PubMed ID: 12895101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distal metal effects in cobalt porphyrins related to CcO.
    Collman JP; Berg KE; Sunderland CJ; Aukauloo A; Vance MA; Solomon EI
    Inorg Chem; 2002 Dec; 41(25):6583-96. PubMed ID: 12470053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent applications of a synthetic model of cytochrome c oxidase: beyond functional modeling.
    Collman JP; Ghosh S
    Inorg Chem; 2010 Jul; 49(13):5798-810. PubMed ID: 20527796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O2 and CO binding to tetraaza-tripodal-capped iron(II) porphyrins.
    Ruzié C; Even P; Ricard D; Roisnel T; Boitrel B
    Inorg Chem; 2006 Feb; 45(3):1338-48. PubMed ID: 16441146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of Cu(B).
    Boulatov R; Collman JP; Shiryaeva IM; Sunderland CJ
    J Am Chem Soc; 2002 Oct; 124(40):11923-35. PubMed ID: 12358536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Built-in axial base binding on phenanthroline-strapped zinc(II) and iron(III) porphyrins.
    Melin F; Choua S; Bernard M; Turek P; Weiss J
    Inorg Chem; 2006 Dec; 45(26):10750-7. PubMed ID: 17173432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and photophysical studies of trans-AB(2)C-substituted porphyrin ligands and their zinc and copper complexes.
    Heinze K; Reinhart A
    Dalton Trans; 2008 Jan; (4):469-80. PubMed ID: 18185863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional model of the cytochrome c oxidase active site: unique conversion of a heme-mu-peroxo-Cu(II) intermediate into heme- superoxo/Cu(I).
    Liu JG; Naruta Y; Tani F
    Angew Chem Int Ed Engl; 2005 Mar; 44(12):1836-40. PubMed ID: 15723432
    [No Abstract]   [Full Text] [Related]  

  • 17. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2.
    Collman JP; Fu L; Herrmann PC; Zhang X
    Science; 1997 Feb; 275(5302):949-51. PubMed ID: 9020071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O2(2-))-CuII]+.
    Ghiladi RA; Huang HW; Moënne-Loccoz P; Stasser J; Blackburn NJ; Woods AS; Cotter RJ; Incarvito CD; Rheingold AL; Karlin KD
    J Biol Inorg Chem; 2005 Jan; 10(1):63-77. PubMed ID: 15583964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase.
    Buse G; Soulimane T; Dewor M; Meyer HE; Blüggel M
    Protein Sci; 1999 May; 8(5):985-90. PubMed ID: 10338009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes.
    Collman JP; Decréau RA; Lin H; Hosseini A; Yang Y; Dey A; Eberspacher TA
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7320-3. PubMed ID: 19380725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.