These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12929655)

  • 21. A theoretical study on the binding of O(2), NO and CO to heme proteins.
    Blomberg LM; Blomberg MR; Siegbahn PE
    J Inorg Biochem; 2005 Apr; 99(4):949-58. PubMed ID: 15811512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New advances in ligand design for synthetic modeling of metalloprotein active sites.
    Tolman WB; Spencer DJ
    Curr Opin Chem Biol; 2001 Apr; 5(2):188-95. PubMed ID: 11282346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An expeditious synthesis of tailed tren-capped porphyrins.
    Even P; Ruzié C; Ricard D; Boitrel B
    Org Lett; 2005 Sep; 7(20):4325-8. PubMed ID: 16178524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle.
    Wikström M
    Biochim Biophys Acta; 2000 May; 1458(1):188-98. PubMed ID: 10812033
    [No Abstract]   [Full Text] [Related]  

  • 25. Efficient and versatile synthesis of new porphyrins bearing an N3O moiety: ligands for mimicking cytochrome c oxidase.
    Ruzié C; Even-Hernandez P; Boitrel B
    Org Lett; 2008 Jul; 10(13):2673-6. PubMed ID: 18533673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heme-Cu complexes as oxygen-activating functional models for the active site of cytochrome c oxidase.
    Naruta Y; Sasaki T; Tani F; Tachi Y; Kawato N; Nakamura N
    J Inorg Biochem; 2001 Feb; 83(4):239-46. PubMed ID: 11293543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic evidence for a heme-superoxide/Cu(I) intermediate in a functional model of cytochrome c oxidase.
    Collman JP; Sunderland CJ; Berg KE; Vance MA; Solomon EI
    J Am Chem Soc; 2003 Jun; 125(22):6648-9. PubMed ID: 12769571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Internal electron-transfer reactions in cytochrome c oxidase.
    Brzezinski P
    Biochemistry; 1996 May; 35(18):5611-5. PubMed ID: 8639518
    [No Abstract]   [Full Text] [Related]  

  • 29. Naphthalene-fused metallo-porphyrins--synthesis and spectroscopy.
    Lewtak JP; Gryko D; Bao D; Sebai E; Vakuliuk O; Ścigaj M; Gryko DT
    Org Biomol Chem; 2011 Dec; 9(23):8178-81. PubMed ID: 21997344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of Cu(B) with Carbon Monoxide in Cytochrome c Oxidase: Origin of the Anomalous Correlation between the Fe-CO and C-O Stretching Frequencies.
    Egawa T; Haber J; Fee JA; Yeh SR; Rousseau DL
    J Phys Chem B; 2015 Jul; 119(27):8509-20. PubMed ID: 26056844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and structural characterization of cross-linked histidine-phenol Cu(ii) complexes as cytochrome c oxidase active site models.
    White KN; Sen I; Szundi I; Landaverry YR; Bria LE; Konopelski JP; Olmstead MM; Einarsdóttir O
    Chem Commun (Camb); 2007 Aug; (31):3252-4. PubMed ID: 17668091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dioxygen reduction at dicobalt complexes of a Schiff base calixpyrrole ligand.
    Givaja G; Volpe M; Edwards MA; Blake AJ; Wilson C; Schröder M; Love JB
    Angew Chem Int Ed Engl; 2007; 46(4):584-6. PubMed ID: 17152099
    [No Abstract]   [Full Text] [Related]  

  • 33. Copper(I) and copper(II) complexes possessing cross-linked imidazole-phenol ligands: structures and dioxygen reactivity.
    Kamaraj K; Kim E; Galliker B; Zakharov LN; Rheingold AL; Zuberbühler AD; Karlin KD
    J Am Chem Soc; 2003 May; 125(20):6028-9. PubMed ID: 12785812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Water Molecule Residing in the Fe
    Han Du WG; McRee D; Götz AW; Noodleman L
    Inorg Chem; 2020 Jul; 59(13):8906-8915. PubMed ID: 32525689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of alkanethiolate-coordinated iron porphyrins and their dioxygen adducts as models for the active center of cytochrome p450: direct evidence for hydrogen bonding to bound dioxygen.
    Tani F; Matsu-ura M; Nakayama S; Ichimura M; Nakamura N; Naruta Y
    J Am Chem Soc; 2001 Feb; 123(6):1133-42. PubMed ID: 11456666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase.
    Namslauer A; Brzezinski P
    FEBS Lett; 2004 Jun; 567(1):103-10. PubMed ID: 15165901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient synthesis of a porphyrin-N-tripod conjugate with covalently linked proximal ligand: toward new-generation active-site models of cytochrome c oxidase.
    Collman JP; Zhong M; Wang Z; Rapta M; Rose E
    Org Lett; 1999 Dec; 1(13):2121-4. PubMed ID: 10836066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux.
    Collman JP; Devaraj NK; Decréau RA; Yang Y; Yan YL; Ebina W; Eberspacher TA; Chidsey CE
    Science; 2007 Mar; 315(5818):1565-8. PubMed ID: 17363671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of electron transfer pathways in cytochrome C oxidase.
    Tan ML; Balabin I; Onuchic JN
    Biophys J; 2004 Mar; 86(3):1813-9. PubMed ID: 14990507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling protein-protein complexes involved in the cytochrome C oxidase copper-delivery pathway.
    van Dijk AD; Ciofi-Baffoni S; Banci L; Bertini I; Boelens R; Bonvin AM
    J Proteome Res; 2007 Apr; 6(4):1530-9. PubMed ID: 17338559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.