These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12929661)

  • 1. A proposed model of Mycobacterium avium complex dihydrofolate reductase and its utility for drug design.
    Kharkar PS; Kulkarni VM
    Org Biomol Chem; 2003 Apr; 1(8):1315-22. PubMed ID: 12929661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase.
    Debnath AK
    J Med Chem; 2002 Jan; 45(1):41-53. PubMed ID: 11754578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs.
    Li R; Sirawaraporn R; Chitnumsub P; Sirawaraporn W; Wooden J; Athappilly F; Turley S; Hol WG
    J Mol Biol; 2000 Jan; 295(2):307-23. PubMed ID: 10623528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New antifolate inhibitors for Mycobacterium avium.
    Barrow EW; Suling WJ; Seitz LE; Reynolds RC; Barrow WW
    Med Chem; 2006 Sep; 2(5):505-10. PubMed ID: 17017990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and cloning of the Mycobacterium avium folA gene, required for dihydrofolate reductase activity.
    Zywno-van Ginkel S; Dooley TP; Suling WJ; Barrow WW
    FEMS Microbiol Lett; 1997 Nov; 156(1):69-78. PubMed ID: 9368362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling.
    Hong W; Wang Y; Chang Z; Yang Y; Pu J; Sun T; Kaur S; Sacchettini JC; Jung H; Lin Wong W; Fah Yap L; Fong Ngeow Y; Paterson IC; Wang H
    Sci Rep; 2015 Oct; 5():15328. PubMed ID: 26471125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based enzyme inhibitor design: modeling studies and crystal structure analysis of Pneumocystis carinii dihydrofolate reductase ternary complex with PT653 and NADPH.
    Cody V; Galitsky N; Luft JR; Pangborn W; Rosowsky A; Queener SF
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):946-54. PubMed ID: 12037296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution.
    Alotaibi M; Reyes BD; Le T; Luong P; Valafar F; Metzger RP; Fogel GB; Hecht D
    J Mol Graph Model; 2017 Jan; 71():135-153. PubMed ID: 27914300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel Mycobacterium tuberculosis dihydrofolate reductase inhibitors through rational drug design.
    Akhter M
    Int J Mycobacteriol; 2016 Dec; 5 Suppl 1():S96. PubMed ID: 28043639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes.
    Sharma VK; Abbat S; Bharatam PV
    Mol Inform; 2017 Nov; 36(11):. PubMed ID: 28605138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of dihydrofolate reductase and aminoglycoside adenyltransferase enzyme from Klebsiella pneumoniae multidrug resistant strain DF12SA with clindamycin: a molecular modelling and docking study.
    Shahi SK; Singh VK; Kumar A; Gupta SK; Singh SK
    J Mol Model; 2013 Mar; 19(3):973-83. PubMed ID: 23097003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain.
    Chan DC; Fu H; Forsch RA; Queener SF; Rosowsky A
    J Med Chem; 2005 Jun; 48(13):4420-31. PubMed ID: 15974594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis.
    El-Hamamsy MH; Smith AW; Thompson AS; Threadgill MD
    Bioorg Med Chem; 2007 Jul; 15(13):4552-76. PubMed ID: 17451962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution.
    Klon AE; Héroux A; Ross LJ; Pathak V; Johnson CA; Piper JR; Borhani DW
    J Mol Biol; 2002 Jul; 320(3):677-93. PubMed ID: 12096917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tobacco budworm dihydrofolate reductase is a promising target for insecticide discovery.
    Walker VK; Tyshenko MG; Kuiper MJ; Dargar RV; Yuhas DA; Cruickshank PA; Chaguturu R
    Eur J Biochem; 2000 Jan; 267(2):394-403. PubMed ID: 10632709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(omega-carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions.
    Cody V; Pace J; Chisum K; Rosowsky A
    Proteins; 2006 Dec; 65(4):959-69. PubMed ID: 17019704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building.
    Lemcke T; Christensen IT; Jørgensen FS
    Bioorg Med Chem; 1999 Jun; 7(6):1003-11. PubMed ID: 10428368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural comparison of Mtb-DHFR and h-DHFR for design, synthesis and evaluation of selective non-pteridine analogues as antitubercular agents.
    Sharma K; Tanwar O; Sharma S; Ali S; Alam MM; Zaman MS; Akhter M
    Bioorg Chem; 2018 Oct; 80():319-333. PubMed ID: 29986181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim.
    Rosowsky A; Forsch RA; Queener SF
    J Med Chem; 2002 Jan; 45(1):233-41. PubMed ID: 11754594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase.
    Suling WJ; Reynolds RC; Barrow EW; Wilson LN; Piper JR; Barrow WW
    J Antimicrob Chemother; 1998 Dec; 42(6):811-5. PubMed ID: 10052907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.