These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 12929756)
1. Protein matrix elasticity determined by fluorescence anisotropy of its tryptophan residues. Zentz C; Glandières JM; El Moshni S; Alpert B Photochem Photobiol; 2003 Jul; 78(1):98-102. PubMed ID: 12929756 [TBL] [Abstract][Full Text] [Related]
2. Motions of tryptophan residues in asialylated human alpha 1-acid glycoprotein. Albani JR Biochim Biophys Acta; 1996 Dec; 1291(3):215-20. PubMed ID: 8980635 [TBL] [Abstract][Full Text] [Related]
3. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
4. Binding effect of progesterone on the dynamics of alpha1-acid glycoprotein. Albani JR Biochim Biophys Acta; 1997 Aug; 1336(2):349-59. PubMed ID: 9305808 [TBL] [Abstract][Full Text] [Related]
5. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin. Kemple MD; Yuan P; Nollet KE; Fuchs JA; Silva N; Prendergast FG Biophys J; 1994 Jun; 66(6):2111-26. PubMed ID: 8075345 [TBL] [Abstract][Full Text] [Related]
6. Nanosecond rotational motions of apolipoprotein C-I in solution and in complexes with dimyristoylphosphatidylcholine. Jonas A; Privat JP; Wahl P; Osborne JC Biochemistry; 1982 Nov; 21(24):6205-11. PubMed ID: 7150552 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved fluorescence study of human recombinant interferon alpha 2. Association state of the protein, spatial proximity of the two tryptophan residues. Vincent M; Li De La Sierra IM; Berberan-Santos MN; Diaz A; Diaz M; Padron G; Gallay J Eur J Biochem; 1992 Dec; 210(3):953-61. PubMed ID: 1483478 [TBL] [Abstract][Full Text] [Related]
8. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification. Molla AR; Maity SS; Ghosh S; Mandal DK Biochimie; 2009 Jul; 91(7):857-67. PubMed ID: 19383525 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Martinho JM; Santos AM; Fedorov A; Baptista RP; Taipa MA; Cabral JM Photochem Photobiol; 2003 Jul; 78(1):15-22. PubMed ID: 12929743 [TBL] [Abstract][Full Text] [Related]
10. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506 [TBL] [Abstract][Full Text] [Related]
11. Dynamics ofLens culinaris agglutinin studied by red-edge excitation spectra and anisotropy measurements of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues. Albani JR J Fluoresc; 1996 Dec; 6(4):199-208. PubMed ID: 24227343 [TBL] [Abstract][Full Text] [Related]
12. A comparative picosecond-resolved fluorescence study of tryptophan residues in iron-sulfur proteins. Dorovska-Taran V; van Hoek A; Link TA; Visser AJ; Hagen WR FEBS Lett; 1994 Jul; 348(3):305-10. PubMed ID: 8034060 [TBL] [Abstract][Full Text] [Related]
13. Correlation between dynamics, structure and spectral properties of human alpha 1-acid glycoprotein (orosomucoid): a fluorescence approach. Albani JR Spectrochim Acta A Mol Biomol Spectrosc; 1998 Jan; 54A(1):175-83. PubMed ID: 9532772 [TBL] [Abstract][Full Text] [Related]
14. Energy migration in novel pH-triggered self-assembled beta-sheet ribbons. Kayser V; Turton DA; Aggeli A; Beevers A; Reid GD; Beddard GS J Am Chem Soc; 2004 Jan; 126(1):336-43. PubMed ID: 14709100 [TBL] [Abstract][Full Text] [Related]
15. Heterogeneous motions within human apohemoglobin. Haouz A; El Mohsni S; Zentz C; Merola F; Alpert B Eur J Biochem; 1999 Aug; 264(1):250-7. PubMed ID: 10447695 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence. Axelsen PH; Prendergast FG Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198 [TBL] [Abstract][Full Text] [Related]
17. Constrained analysis of fluorescence anisotropy decay:application to experimental protein dynamics. Feinstein E; Deikus G; Rusinova E; Rachofsky EL; Ross JB; Laws WR Biophys J; 2003 Jan; 84(1):599-611. PubMed ID: 12524313 [TBL] [Abstract][Full Text] [Related]
18. Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking. Mukherjee M; Sardar PS; Ghorai SK; Samanta SK; Roy AS; Dasgupta S; Ghosh S J Photochem Photobiol B; 2012 Oct; 115():93-104. PubMed ID: 22884693 [TBL] [Abstract][Full Text] [Related]
19. Protein flexibility and aggregation state of human epidermal growth factor. A time-resolved fluorescence study of the native protein and engineered single-tryptophan mutants. Gallay J; Vincent M; Li de la Sierra IM; Alvarez J; Ubieta R; Madrazo J; Padron G Eur J Biochem; 1993 Jan; 211(1-2):213-9. PubMed ID: 8425531 [TBL] [Abstract][Full Text] [Related]
20. Solvent-exposed tryptophans probe the dynamics at protein surfaces. Lakshmikanth GS; Krishnamoorthy G Biophys J; 1999 Aug; 77(2):1100-6. PubMed ID: 10423454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]