These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12929847)

  • 1. Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium.
    Okull DO; Beelman RB; Gourama H
    J Food Prot; 2003 Aug; 66(8):1503-5. PubMed ID: 12929847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium.
    Pennerman KK; Scarsella JB; Yin GH; Hua ST; Hartman TG; Bennett JW
    Mycotoxin Res; 2019 Nov; 35(4):329-340. PubMed ID: 31025195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effect of essential oil of betel leaf (Piper betle L.) on germination, growth, and apparent lag time of Penicillium expansum on semi-synthetic media.
    Basak S; Guha P
    Int J Food Microbiol; 2015 Dec; 215():171-8. PubMed ID: 26439423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests.
    Maneerat C; Hayata Y
    Int J Food Microbiol; 2006 Mar; 107(2):99-103. PubMed ID: 16269195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germination of penicillium paneum Conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor.
    Chitarra GS; Abee T; Rombouts FM; Posthumus MA; Dijksterhuis J
    Appl Environ Microbiol; 2004 May; 70(5):2823-9. PubMed ID: 15128538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum.
    Yin G; Zhang Y; Fu M; Hua SST; Huang Q; Pennerman KK; Wu G; Jurick WM; Lee S; Bu L; Zhao H; Bennett JW
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):977-991. PubMed ID: 30923972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system.
    Xu Y; Hall C; Wolf-Hall C; Manthey F
    Int J Food Microbiol; 2008 Feb; 121(3):262-7. PubMed ID: 18077042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition.
    Chitarra GS; Abee T; Rombouts FM; Dijksterhuis J
    FEMS Microbiol Ecol; 2005 Sep; 54(1):67-75. PubMed ID: 16329973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the biosynthesis of 1-octen-3-ol using a crude homogenate of Agaricus bisporus in a bioreactor.
    Morawicki RO; Beelman RB
    J Food Sci; 2008 Apr; 73(3):C135-9. PubMed ID: 18387089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi.
    Xiong C; Li Q; Li S; Chen C; Chen Z; Huang W
    J Oleo Sci; 2017 Sep; 66(9):1041-1049. PubMed ID: 28794307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum.
    Venturini ME; Blanco D; Oria R
    J Food Prot; 2002 May; 65(5):834-9. PubMed ID: 12030296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.
    Xu Y; Hall C; Wolf-Hall C
    J Food Sci; 2008 Aug; 73(6):M250-6. PubMed ID: 19241553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites.
    Qiao N; Yu L; Zhang C; Wei C; Zhao J; Zhang H; Tian F; Zhai Q; Chen W
    FEMS Microbiol Lett; 2020 Sep; 367(18):. PubMed ID: 32845333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity of Mexican oregano (Lippia berlandieri Shauer).
    Portillo-Ruiz MC; Viramontes-Ramos S; Muñoz-Castellanos LN; Gastélum-Franco MG; Nevárez-Moorillón GV
    J Food Prot; 2005 Dec; 68(12):2713-7. PubMed ID: 16355848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coprinopsis cinerea dioxygenase is an oxygenase forming 10(S)-hydroperoxide of linoleic acid, essential for mushroom alcohol, 1-octen-3-ol, synthesis.
    Teshima T; Funai R; Nakazawa T; Ito J; Utsumi T; Kakumyan P; Mukai H; Yoshiga T; Murakami R; Nakagawa K; Honda Y; Matsui K
    J Biol Chem; 2022 Nov; 298(11):102507. PubMed ID: 36122804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits.
    Amiri A; Holb IJ; Schnabel G
    Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum.
    Rouissi W; Ugolini L; Martini C; Lazzeri L; Mari M
    J Food Prot; 2013 Nov; 76(11):1879-86. PubMed ID: 24215691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of food-contaminating Penicillium genus fungi to some preservatives and disinfectants.
    Levinskaite L
    Ann Agric Environ Med; 2012; 19(1):85-9. PubMed ID: 22462451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and validation of the antifungal activity of DL-3-phenyllactic acid and acetic acid on bread spoilage moulds.
    Debonne E; Vermeulen A; Bouboutiefski N; Ruyssen T; Van Bockstaele F; Eeckhout M; Devlieghere F
    Food Microbiol; 2020 Jun; 88():103407. PubMed ID: 31997763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acid bacteria with potential to eliminate fungal spoilage in foods.
    Rouse S; Harnett D; Vaughan A; van Sinderen D
    J Appl Microbiol; 2008 Mar; 104(3):915-23. PubMed ID: 17976175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.