These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12929914)

  • 1. Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons.
    Legenstein R; Markram H; Maass W
    Rev Neurosci; 2003; 14(1-2):5-19. PubMed ID: 12929914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational aspects of feedback in neural circuits.
    Maass W; Joshi P; Sontag ED
    PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fading memory and kernel properties of generic cortical microcircuit models.
    Maass W; Natschläger T; Markram H
    J Physiol Paris; 2004; 98(4-6):315-30. PubMed ID: 16310350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement generation with circuits of spiking neurons.
    Joshi P; Maass W
    Neural Comput; 2005 Aug; 17(8):1715-38. PubMed ID: 15969915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
    Hoerzer GM; Legenstein R; Maass W
    Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise Long-Range Microcircuit-to-Microcircuit Communication Connects the Frontal and Sensory Cortices in the Mammalian Brain.
    Ren SQ; Li Z; Lin S; Bergami M; Shi SH
    Neuron; 2019 Oct; 104(2):385-401.e3. PubMed ID: 31371111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge of chaos and prediction of computational performance for neural circuit models.
    Legenstein R; Maass W
    Neural Netw; 2007 Apr; 20(3):323-34. PubMed ID: 17517489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning shapes cortical dynamics to enhance integration of relevant sensory input.
    Chadwick A; Khan AG; Poort J; Blot A; Hofer SB; Mrsic-Flogel TD; Sahani M
    Neuron; 2023 Jan; 111(1):106-120.e10. PubMed ID: 36283408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system.
    Song P; Wang XJ
    J Neurosci; 2005 Jan; 25(4):1002-14. PubMed ID: 15673682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.
    Haeusler S; Schuch K; Maass W
    J Physiol Paris; 2009; 103(1-2):73-87. PubMed ID: 19500669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which model to use for cortical spiking neurons?
    Izhikevich EM
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1063-70. PubMed ID: 15484883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits.
    Schubert D; Kötter R; Staiger JF
    Brain Struct Funct; 2007 Sep; 212(2):107-19. PubMed ID: 17717691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.
    Zhang X; Ju H; Penney TB; VanDongen AMJ
    eNeuro; 2017; 4(3):. PubMed ID: 28534043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity.
    Ramaswamy S; Colangelo C; Markram H
    Front Neural Circuits; 2018; 12():77. PubMed ID: 30356701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo.
    Kim T; Oh WC; Choi JH; Kwon HB
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):E1372-81. PubMed ID: 26903616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex.
    Lang S; Dercksen VJ; Sakmann B; Oberlaender M
    Neural Netw; 2011 Nov; 24(9):998-1011. PubMed ID: 21775101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.
    Puccini GD; Sanchez-Vives MV; Compte A
    PLoS Comput Biol; 2007 May; 3(5):e82. PubMed ID: 17500584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation.
    Yu J; Gutnisky DA; Hires SA; Svoboda K
    Nat Neurosci; 2016 Dec; 19(12):1647-1657. PubMed ID: 27749825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.