These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 129302)

  • 1. Differential effects of mercurial compounds on excitable tissues.
    Shamoo AE; Maclennan DH; Elderfrawi ME
    Chem Biol Interact; 1976 Jan; 12(1):41-52. PubMed ID: 129302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the (Ca++ +Mg++)-ATPase of sarcoplasmic reticulum.
    Shamoo AE; MacLennan DH
    J Membr Biol; 1975 Dec; 25(1-2):65-74. PubMed ID: 129568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of ionophore activity in a 20,000-dalton fragment of the adenosine triphosphatase of Sarcoplasmic reticulum.
    Shamoo AE; Ryan TE; Stewart PS; MacLennan DH
    J Biol Chem; 1976 Jul; 251(13):4147-54. PubMed ID: 132445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of action of "ruthenium red" compounds on Ca2+ ionophore from sarcoplasmic reticulum (Ca2+ + Mg2+)- adenosine triphosphatase and lipid bilayer.
    Shamoo AE; Thompson TR; Campbell KP; Scott TL; Goldstein DA
    J Biol Chem; 1975 Oct; 250(20):8289-91. PubMed ID: 126243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of mercurials on the active and passive transport properties of sarcoplasmic reticulum.
    Chiu VC; Mouring D; Haynes DH
    J Bioenerg Biomembr; 1983 Feb; 15(1):13-25. PubMed ID: 6853473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles.
    Jilka RL; Martonosi AN; Tillack TW
    J Biol Chem; 1975 Sep; 250(18):7511-24. PubMed ID: 126238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction.
    Zaidi NF; Lagenaur CF; Abramson JJ; Pessah I; Salama G
    J Biol Chem; 1989 Dec; 264(36):21725-36. PubMed ID: 2532212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active calcium treatment transport via coupling between the enzymatic and the ionophoric sites of Ca2+ + Mg2+-ATPase.
    Shamoo AE; Scott TL; Ryan TE
    J Supramol Struct; 1977; 6(3):345-53. PubMed ID: 145515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of HgCl2 on excitation-secretion coupling at the motor nerve terminal and excitation-contraction coupling in the muscle cell.
    Røed A; Herlofson BB
    Cell Mol Neurobiol; 1994 Dec; 14(6):623-36. PubMed ID: 7543823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes.
    Beeler TJ; Jona I; Martonosi A
    J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of calcium ion transport ATPase upon the passive calcium ion permeability of phospholipid vesicles.
    Jilka RL; Martonosi AN
    Biochim Biophys Acta; 1977 Apr; 466(1):57-67. PubMed ID: 139922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles.
    Michaelson DM; Ophir I; Angel I
    J Neurochem; 1980 Jul; 35(1):116-24. PubMed ID: 6108987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle.
    Alonso GL; González DA; Takara D; Ostuni MA; Sánchez GA
    Biochim Biophys Acta; 1998 Oct; 1405(1-3):47-54. PubMed ID: 9784602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase.
    Sumida M; Sasaki S
    J Biochem; 1975 Oct; 78(4):757-62. PubMed ID: 55412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of inhibition of active transport ATPases by mercurials.
    Berg GG; Miles EF
    Chem Biol Interact; 1979 Oct; 27(2-3):199-219. PubMed ID: 227613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of acetylcholine receptors with organic mercury compounds.
    Eldefrawi ME; Mansour NA; Eldefrawi AT
    Adv Exp Med Biol; 1977; 84():449-63. PubMed ID: 899953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.