BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 12930818)

  • 1. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator.
    Higashijima S; Masino MA; Mandel G; Fetcho JR
    J Neurophysiol; 2003 Dec; 90(6):3986-97. PubMed ID: 12930818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate.
    Fetcho JR; Cox KJ; O'Malley DM
    Histochem J; 1998 Mar; 30(3):153-67. PubMed ID: 10188924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of active neural circuitry in the spinal cord of intact zebrafish.
    Fetcho JR; O'Malley DM
    J Neurophysiol; 1995 Jan; 73(1):399-406. PubMed ID: 7714582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish.
    Satou C; Kimura Y; Kohashi T; Horikawa K; Takeda H; Oda Y; Higashijima S
    J Neurosci; 2009 May; 29(21):6780-93. PubMed ID: 19474306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape behaviour: reciprocal inhibition ensures effective escape trajectory.
    Sillar KT
    Curr Biol; 2009 Aug; 19(16):R697-9. PubMed ID: 19706281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-cell patch-clamp recordings from identified spinal neurons in the zebrafish embryo.
    Saint-Amant L; Drapeau P
    Methods Cell Sci; 2003; 25(1-2):59-64. PubMed ID: 14739588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic zebrafish for ratiometric imaging of cytosolic and mitochondrial Ca2+ response in teleost embryo.
    Mizuno H; Sassa T; Higashijima S; Okamoto H; Miyawaki A
    Cell Calcium; 2013 Sep; 54(3):236-45. PubMed ID: 23906585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish.
    Muto A; Ohkura M; Kotani T; Higashijima S; Nakai J; Kawakami K
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5425-30. PubMed ID: 21383146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.
    McLean DL; Fetcho JR
    J Neurosci; 2009 Oct; 29(43):13566-77. PubMed ID: 19864569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons.
    Bhatt DH; McLean DL; Hale ME; Fetcho JR
    Neuron; 2007 Jan; 53(1):91-102. PubMed ID: 17196533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements.
    Ritter DA; Bhatt DH; Fetcho JR
    J Neurosci; 2001 Nov; 21(22):8956-65. PubMed ID: 11698606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New statistical methods enhance imaging of cameleon fluorescence resonance energy transfer in cultured zebrafish spinal neurons.
    Fan X; Majumder A; Reagin SS; Porter EL; Sornborger AT; Keith CH; Lauderdale JD
    J Biomed Opt; 2007; 12(3):034017. PubMed ID: 17614725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a widespread brain stem escape network in larval zebrafish.
    Gahtan E; Sankrithi N; Campos JB; O'Malley DM
    J Neurophysiol; 2002 Jan; 87(1):608-14. PubMed ID: 11784774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Ca2+ imaging in C. elegans.
    Kerr RA; Schafer WR
    Methods Mol Biol; 2006; 351():253-64. PubMed ID: 16988439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonic inhibition alternates in paired neurons that set direction of fish escape reaction.
    Hatta K; Korn H
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12090-5. PubMed ID: 10518581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish.
    Liu KS; Fetcho JR
    Neuron; 1999 Jun; 23(2):325-35. PubMed ID: 10399938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors.
    O'Malley DM; Kao YH; Fetcho JR
    Neuron; 1996 Dec; 17(6):1145-55. PubMed ID: 8982162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A topographic map of recruitment in spinal cord.
    McLean DL; Fan J; Higashijima S; Hale ME; Fetcho JR
    Nature; 2007 Mar; 446(7131):71-5. PubMed ID: 17330042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon imaging of neural population activity in zebrafish.
    Renninger SL; Orger MB
    Methods; 2013 Aug; 62(3):255-67. PubMed ID: 23727462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.