These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12931883)

  • 21. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.
    Labastida I; Armienta MA; Lara-Castro RH; Aguayo A; Cruz O; Ceniceros N
    J Hazard Mater; 2013 Nov; 262():1187-95. PubMed ID: 22819958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Treatment of highly polluted groundwater by novel iron removal process.
    Sim SJ; Kang CD; Lee JW; Kim WS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(1):25-38. PubMed ID: 11381783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance assessment of laboratory and field-scale multi-step passive treatment of iron-rich acid mine drainage for design improvement.
    Rakotonimaro TV; Neculita CM; Bussière B; Genty T; Zagury GJ
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17575-17589. PubMed ID: 29667051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological and behavioral responses of stonefly nymphs to enhanced limestone treatment of acid mine drainage.
    Cole MB; Arnold DE; Watten BJ
    Water Res; 2001 Mar; 35(3):625-32. PubMed ID: 11228958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating remedial alternatives for an acid mine drainage stream: application of a reactive transport model.
    Runkel RL; Kimball BA
    Environ Sci Technol; 2002 Mar; 36(5):1093-101. PubMed ID: 11917996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): a novel approach to remediation of acidic ground water.
    Aelion CM; Davis HT; Flora JR; Kirtland BC; Amidon MB
    Environ Pollut; 2009 Jan; 157(1):186-93. PubMed ID: 18774208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferrous iron removal by limestone and crushed concrete in dynamic flow columns.
    Wang Y; Sikora S; Townsend TG
    J Environ Manage; 2013 Jul; 124():165-71. PubMed ID: 23591465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.
    Głomba M
    J Air Waste Manag Assoc; 2010 Aug; 60(8):1009-16. PubMed ID: 20842941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue.
    Burt RA; Caruccio FT
    Environ Geochem Health; 1986 Sep; 8(3):71-8. PubMed ID: 24214013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing phosphate limestone waste as a cost-effective solution for acid mine drainage treatment.
    Elamraoui L; Elghali A; Fashae OA; Benzaazoua M
    Sci Total Environ; 2024 Nov; 949():175188. PubMed ID: 39089376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corrosion control enhancement from a dolomite-amended slow sand filter.
    Rooklidge SJ; Ketchum LH
    Water Res; 2002 Jun; 36(11):2689-94. PubMed ID: 12146855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive transport modeling of column experiments for the remediation of acid mine drainage.
    Amos RT; Mayer KU; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2004 Jun; 38(11):3131-8. PubMed ID: 15224746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.
    Degens BP; Krassoi R; Galvin L; Reynolds B; Micevska T
    Chemosphere; 2018 May; 198():492-500. PubMed ID: 29425949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment.
    Cocos IA; Zagury GJ; Clément B; Samson R
    Water Res; 2002 Jan; 36(1):167-77. PubMed ID: 11766792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus-calcium carbonate saturation relationships in a lowland chalk river impacted by sewage inputs and phosphorus remediation: an assessment of phosphorus self-cleansing mechanisms in natural waters.
    Neal C; Jarvie HP; Williams RJ; Neal M; Wickham H; Hill L
    Sci Total Environ; 2002 Jan; 282-283():295-310. PubMed ID: 11846075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of particle size in a limestone-hydrochloric acid reaction system.
    Sun B; Zhou Q; Chen X; Xu T; Hui S
    J Hazard Mater; 2010 Jul; 179(1-3):400-8. PubMed ID: 20363559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium Carbonate.
    Al Omari MM; Rashid IS; Qinna NA; Jaber AM; Badwan AA
    Profiles Drug Subst Excip Relat Methodol; 2016; 41():31-132. PubMed ID: 26940168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural alkalinity generation in neutral lakes affected by acid mine drainage.
    Koschorreck M; Tittel J
    J Environ Qual; 2007; 36(4):1163-71. PubMed ID: 17596625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage.
    Mayer KU; Benner SG; Blowes DW
    J Contam Hydrol; 2006 May; 85(3-4):195-211. PubMed ID: 16554107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.