These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12931883)
41. Acidification-neutralization processes in a lignite mine spoil amended with fly ash or limestone. Seoane S; Leirós MC J Environ Qual; 2001; 30(4):1420-31. PubMed ID: 11476521 [TBL] [Abstract][Full Text] [Related]
42. Effects of limestone on the dissolution of phosphate from sediments under anaerobic condition. Kim HS; Park J Environ Technol; 2008 Apr; 29(4):375-80. PubMed ID: 18619142 [TBL] [Abstract][Full Text] [Related]
43. Kinetic analysis of constructed systems for the recovery of contaminated areas by acid mine drainage. Mendes E; Barros E; Zocche JJ; Alexandre NZ; Galatto SL; Back M; Pereira JL; Frassetto J; Angioletto E Environ Sci Pollut Res Int; 2012 Jul; 19(6):2107-14. PubMed ID: 22227807 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of removal of orthophosphate and ammonia from rainfall runoff using aboveground permeable reactive barrier composed of limestone and zeolite. Srinivasan R; Hoffman DW; Wolfe JE; Prcin LJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1441-50. PubMed ID: 18780222 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of acidity estimation methods for mine drainage, Pennsylvania, USA. Park D; Park B; Mendinsky JJ; Paksuchon B; Suhataikul R; Dempsey BA; Cho Y Environ Monit Assess; 2015 Jan; 187(1):4095. PubMed ID: 25399119 [TBL] [Abstract][Full Text] [Related]
46. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Aziz HA; Yusoff MS; Adlan MN; Adnan NH; Alias S Waste Manag; 2004; 24(4):353-8. PubMed ID: 15081062 [TBL] [Abstract][Full Text] [Related]
47. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system. Prasad D; Henry JG Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156 [TBL] [Abstract][Full Text] [Related]
48. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna. Bogart SJ; Woodman S; Steinkey D; Meays C; Pyle GG Sci Total Environ; 2016 Jul; 559():182-191. PubMed ID: 27060657 [TBL] [Abstract][Full Text] [Related]
49. Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Amos PW; Younger PL Water Res; 2003 Jan; 37(1):108-20. PubMed ID: 12465792 [TBL] [Abstract][Full Text] [Related]
50. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent. Hulshof AH; Blowes DW; Ptacek CJ; Gould WD Environ Sci Technol; 2003 Nov; 37(21):5027-33. PubMed ID: 14620834 [TBL] [Abstract][Full Text] [Related]
51. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site. Dangelmayr MA; Reimus PW; Johnson RH; Clay JT; Stone JJ J Contam Hydrol; 2018 Jun; 213():28-39. PubMed ID: 29691066 [TBL] [Abstract][Full Text] [Related]
52. Effect of ammonium compounds on dissolution rate of South African calcium-based material. Rutto H; Siagi Z; Mbarawa M J Hazard Mater; 2009 Sep; 168(2-3):1532-6. PubMed ID: 19447546 [TBL] [Abstract][Full Text] [Related]
53. Role of multiple substrates (spent mushroom compost, ochre, steel slag, and limestone) in passive remediation of metal-containing acid mine drainage. Molahid VLM; Mohd Kusin F; Madzin Z Environ Technol; 2019 Apr; 40(10):1323-1336. PubMed ID: 29281556 [TBL] [Abstract][Full Text] [Related]
54. Compost and calcium surface treatment effects on subsoil chemistry in acidic minespoil columns. von Willert FJ; Stehouwer RC J Environ Qual; 2003; 32(3):781-8. PubMed ID: 12809279 [TBL] [Abstract][Full Text] [Related]
55. [Limestone and pyrite-limestone constructed wetlands for treating river water]. Zhang J; Li RH; Li J; Hu JS; Sun QQ Huan Jing Ke Xue; 2013 Sep; 34(9):3445-50. PubMed ID: 24288988 [TBL] [Abstract][Full Text] [Related]
56. Advances in seeded ambient temperature ferrite formation for treatment of acid mine drainage. Morgan BE; Lahav O; Loewenthal RE Environ Sci Technol; 2005 Oct; 39(19):7678-83. PubMed ID: 16245844 [TBL] [Abstract][Full Text] [Related]
57. Influence of biodegradation processes on the duration of CaCO3 as a pH buffer in municipal solid waste incinerator bottom ash. Johnson CA; Furrer G Environ Sci Technol; 2002 Jan; 36(2):215-20. PubMed ID: 11827054 [TBL] [Abstract][Full Text] [Related]
58. Remediation technologies for acid mine drainage: Recent trends and future perspectives. Daraz U; Li Y; Ahmad I; Iqbal R; Ditta A Chemosphere; 2023 Jan; 311(Pt 2):137089. PubMed ID: 36336014 [TBL] [Abstract][Full Text] [Related]
59. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide. Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339 [TBL] [Abstract][Full Text] [Related]
60. Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Rau GH Environ Sci Technol; 2008 Dec; 42(23):8935-40. PubMed ID: 19192821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]