These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12931883)

  • 61. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Buffering of alkaline steel slag leachate across a natural wetland.
    Mayes WM; Younger PL; Aumônier J
    Environ Sci Technol; 2006 Feb; 40(4):1237-43. PubMed ID: 16572781
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Performance of an open limestone channel for treating a stream affected by acid rock drainage (León, Spain).
    Santofimia E; López-Pamo E
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14502-17. PubMed ID: 27068908
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species.
    Dick J; De Windt W; De Graef B; Saveyn H; Van der Meeren P; De Belie N; Verstraete W
    Biodegradation; 2006 Aug; 17(4):357-67. PubMed ID: 16491305
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.
    Gitari WM; Petrik LF; Key DL; Okujeni C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(2):117-37. PubMed ID: 21170774
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study.
    Yeheyis MB; Shang JQ; Yanful EK
    J Environ Manage; 2009 Oct; 91(1):237-44. PubMed ID: 19744768
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions.
    Robinson-Lora MA; Brennan RA
    Bioresour Technol; 2009 Nov; 100(21):5063-71. PubMed ID: 19560340
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of pH on in vitro disintegration of phosphate binders.
    Stamatakis MK; Alderman JM; Meyer-Stout PJ
    Am J Kidney Dis; 1998 Nov; 32(5):808-12. PubMed ID: 9820451
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dissolution rates of limestones of different sources.
    Shih SM; Lin JP; Shiau GY
    J Hazard Mater; 2000 Dec; 79(1-2):159-71. PubMed ID: 11040393
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.
    Shipp WG; Zierenberg RA
    Ecol Appl; 2008 Dec; 18(8 Suppl):A29-54. PubMed ID: 19475917
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessing the Influence of Calcium Fluoride on Pyrite Electrochemical Dissolution and Mine Drainage pH.
    Wang L; Liu Q; Zheng K; Li H
    J Environ Qual; 2016 Jul; 45(4):1344-50. PubMed ID: 27380083
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.
    Mulopo J; Radebe V
    Water Sci Technol; 2012; 66(6):1296-300. PubMed ID: 22828309
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dissolution-induced preferential flow in a limestone fracture.
    Liu J; Polak A; Elsworth D; Grader A
    J Contam Hydrol; 2005 Jun; 78(1-2):53-70. PubMed ID: 15936847
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.
    Kalin M; Fyson A; Wheeler WN
    Sci Total Environ; 2006 Aug; 366(2-3):395-408. PubMed ID: 16375949
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.
    Johnson DB; Hallberg KB
    Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.
    Chen L; Stehouwer R; Tong X; Kost D; Bigham JM; Dick WA
    Chemosphere; 2015 Sep; 134():459-65. PubMed ID: 26001939
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effects of low hardness and pH on copper toxicity to Daphnia magna.
    Long KE; Van Genderen EJ; Klaine SJ
    Environ Toxicol Chem; 2004 Jan; 23(1):72-5. PubMed ID: 14768869
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.
    Galhardi JA; Bonotto DM
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18911-27. PubMed ID: 27335014
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine.
    Lamminen M; Wood J; Walker H; Chin YP; He Y; Traina SJ
    J Environ Qual; 2001; 30(4):1371-81. PubMed ID: 11476516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.