These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 12932086)
1. Gates and oscillators: a network model of the brain clock. Antle MC; Foley DK; Foley NC; Silver R J Biol Rhythms; 2003 Aug; 18(4):339-50. PubMed ID: 12932086 [TBL] [Abstract][Full Text] [Related]
2. Gates and oscillators II: zeitgebers and the network model of the brain clock. Antle MC; Foley NC; Foley DK; Silver R J Biol Rhythms; 2007 Feb; 22(1):14-25. PubMed ID: 17229921 [TBL] [Abstract][Full Text] [Related]
3. Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus. Li Y; Liu Z; Zhang J; Wang R; Chen L IET Syst Biol; 2009 Mar; 3(2):100-12. PubMed ID: 19292564 [TBL] [Abstract][Full Text] [Related]
4. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. Bernard S; Gonze D; Cajavec B; Herzel H; Kramer A PLoS Comput Biol; 2007 Apr; 3(4):e68. PubMed ID: 17432930 [TBL] [Abstract][Full Text] [Related]
5. Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Kunz H; Achermann P J Theor Biol; 2003 Sep; 224(1):63-78. PubMed ID: 12900204 [TBL] [Abstract][Full Text] [Related]
6. The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Silver R; Schwartz WJ Methods Enzymol; 2005; 393():451-65. PubMed ID: 15817305 [TBL] [Abstract][Full Text] [Related]
7. Phase organization of circadian oscillators in extended gate and oscillator models. Zhao G J Theor Biol; 2010 May; 264(2):367-76. PubMed ID: 20144621 [TBL] [Abstract][Full Text] [Related]
8. The suprachiasmatic nuclei as a seasonal clock. Coomans CP; Ramkisoensing A; Meijer JH Front Neuroendocrinol; 2015 Apr; 37():29-42. PubMed ID: 25451984 [TBL] [Abstract][Full Text] [Related]
9. Deconstructing Circadian Rhythmicity with Models and Manipulations. Pauls SD; Honma KI; Honma S; Silver R Trends Neurosci; 2016 Jun; 39(6):405-419. PubMed ID: 27090429 [TBL] [Abstract][Full Text] [Related]
10. SCN outputs and the hypothalamic balance of life. Kalsbeek A; Palm IF; La Fleur SE; Scheer FA; Perreau-Lenz S; Ruiter M; Kreier F; Cailotto C; Buijs RM J Biol Rhythms; 2006 Dec; 21(6):458-69. PubMed ID: 17107936 [TBL] [Abstract][Full Text] [Related]
14. Time after time: inputs to and outputs from the mammalian circadian oscillators. Morse D; Sassone-Corsi P Trends Neurosci; 2002 Dec; 25(12):632-7. PubMed ID: 12446131 [TBL] [Abstract][Full Text] [Related]
16. Orchestrating time: arrangements of the brain circadian clock. Antle MC; Silver R Trends Neurosci; 2005 Mar; 28(3):145-51. PubMed ID: 15749168 [TBL] [Abstract][Full Text] [Related]
17. Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Mendoza J; Challet E Neuroscientist; 2009 Oct; 15(5):477-88. PubMed ID: 19224887 [TBL] [Abstract][Full Text] [Related]
18. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Dibner C; Schibler U; Albrecht U Annu Rev Physiol; 2010; 72():517-49. PubMed ID: 20148687 [TBL] [Abstract][Full Text] [Related]
19. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Albus H; Vansteensel MJ; Michel S; Block GD; Meijer JH Curr Biol; 2005 May; 15(10):886-93. PubMed ID: 15916945 [TBL] [Abstract][Full Text] [Related]
20. The suprachiasmatic nucleus: a clock of multiple components. Lee HS; Billings HJ; Lehman MN J Biol Rhythms; 2003 Dec; 18(6):435-49. PubMed ID: 14667145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]