These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12932451)

  • 1. Orientation restraints in molecular dynamics simulations using time and ensemble averaging.
    Hess B; Scheek RM
    J Magn Reson; 2003 Sep; 164(1):19-27. PubMed ID: 12932451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data.
    van Nuland NA; Hangyi IW; van Schaik RC; Berendsen HJ; van Gunsteren WF; Scheek RM; Robillard GT
    J Mol Biol; 1994 Apr; 237(5):544-59. PubMed ID: 8158637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data.
    van Nuland NA; Boelens R; Scheek RM; Robillard GT
    J Mol Biol; 1995 Feb; 246(1):180-93. PubMed ID: 7853396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extended sampling of the configurational space of HPr from E. coli.
    de Groot BL; Amadei A; Scheek RM; van Nuland NA; Berendsen HJ
    Proteins; 1996 Nov; 26(3):314-22. PubMed ID: 8953652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of protein-protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations.
    McCoy MA; Wyss DF
    J Am Chem Soc; 2002 Mar; 124(10):2104-5. PubMed ID: 11878950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
    Tjandra N; Garrett DS; Gronenborn AM; Bax A; Clore GM
    Nat Struct Biol; 1997 Jun; 4(6):443-9. PubMed ID: 9187651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles.
    Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR
    BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of aqueous molecular dynamics with NMR relaxation and residual dipolar couplings favors internal motion in a mannose oligosaccharide.
    Almond A; Bunkenborg J; Franch T; Gotfredsen CH; Duus JO
    J Am Chem Soc; 2001 May; 123(20):4792-802. PubMed ID: 11457289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual dipolar couplings and some specific models for motional averaging.
    Deschamps M; Campbell ID; Boyd J
    J Magn Reson; 2005 Jan; 172(1):118-32. PubMed ID: 15589415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy.
    McEvoy MM; Muhandiram DR; Kay LE; Dahlquist FW
    Biochemistry; 1996 May; 35(18):5633-40. PubMed ID: 8639521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
    Lapin J; Nevzorov AA
    J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the three-dimensional solution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli using multidimensional NMR spectroscopy.
    van Nuland NA; Grötzinger J; Dijkstra K; Scheek RM; Robillard GT
    Eur J Biochem; 1992 Dec; 210(3):881-91. PubMed ID: 1483471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone dynamics of bacteriorhodopsin as studied by (13)C solid-state NMR spectroscopy.
    Barré P; Yamaguchi S; Saitô H; Huster D
    Eur Biophys J; 2003 Sep; 32(6):578-84. PubMed ID: 12830331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of HPr under hydrostatic pressure.
    Canalia M; Malliavin TE; Kremer W; Kalbitzer HR
    Biopolymers; 2004 Aug; 74(5):377-88. PubMed ID: 15222017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1.
    Bouchard JJ; Xia J; Case DA; Peng JW
    J Mol Biol; 2018 Jul; 430(14):2164-2180. PubMed ID: 29775635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved simulation of NOESY spectra by RELAX-JT2 including effects of J-coupling, transverse relaxation and chemical shift anisotrophy.
    Ried A; Gronwald W; Trenner JM; Brunner K; Neidig KP; Kalbitzer HR
    J Biomol NMR; 2004 Oct; 30(2):121-31. PubMed ID: 15666559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution.
    Tjandra N; Omichinski JG; Gronenborn AM; Clore GM; Bax A
    Nat Struct Biol; 1997 Sep; 4(9):732-8. PubMed ID: 9303001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system.
    Wang G; Louis JM; Sondej M; Seok YJ; Peterkofsky A; Clore GM
    EMBO J; 2000 Nov; 19(21):5635-49. PubMed ID: 11060015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.