BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 129327)

  • 1. Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties.
    Jering H; Tschesche H
    Eur J Biochem; 1976 Jan; 61(2):453-63. PubMed ID: 129327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The monodomain Kunitz protein EgKU-7 from the dog tapeworm Echinococcus granulosus is a high-affinity trypsin inhibitor with two interaction sites.
    Fló M; Pellizza L; Durán R; Alvarez B; Fernández C
    Biochem J; 2024 Jun; 481(11):717-739. PubMed ID: 38752933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of human plasma kallikrein active site by design of peptides based on modifications of a Kazal-type inhibitor reactive site.
    Nunes VA; Gozzo AJ; Sampaio MU; Juliano MA; Sampaio CA; Araujo MS
    J Protein Chem; 2003 Aug; 22(6):533-41. PubMed ID: 14703987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of complexes of kallikrein 4 with wild-type and mutated forms of the Kunitz-type inhibitor BbKI.
    Li M; Srp J; Mareš M; Wlodawer A; Gustchina A
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1084-1098. PubMed ID: 34342281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile and Robust Serine Protease Inhibitor Scaffold from
    Chen X; Leahy D; Van Haeften J; Hartfield P; Prentis PJ; van der Burg CA; Surm JM; Pavasovic A; Madio B; Hamilton BR; King GF; Undheim EAB; Brattsand M; Harris JM
    Mar Drugs; 2019 Dec; 17(12):. PubMed ID: 31842369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a proteinase inhibitor from Cajanus cajan (L.).
    Haq SK; Khan RH
    J Protein Chem; 2003 Aug; 22(6):543-54. PubMed ID: 14703988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the complex of a kallikrein inhibitor from Bauhinia bauhinioides with trypsin and modeling of kallikrein complexes.
    Li M; Srp J; Gustchina A; Dauter Z; Mares M; Wlodawer A
    Acta Crystallogr D Struct Biol; 2019 Jan; 75(Pt 1):56-69. PubMed ID: 30644845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Inhibitory Studies of Phosphonic Acid Analogues of Homophenylalanine and Phenylalanine towards Alanyl Aminopeptidases.
    Wanat W; Talma M; Dziuk B; Kafarski P
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32938014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights and molecular dynamics into the inhibitory mechanism of a Kunitz-type trypsin inhibitor from
    de Medeiros AF; de Souza BBP; Coutinho LP; Murad AM; Dos Santos PIM; Monteiro NKV; Santos EAD; Maciel BLL; de Araújo Morais AH
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):480-490. PubMed ID: 33491503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fluorogenic Assay: Analysis of Chemical Modification of Lysine and Arginine to Control Proteolytic Activity of Trypsin.
    More KN; Lim TH; Kang J; Chang DJ
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new lysine derived glyoxal inhibitor of trypsin, its properties and utilization for studying the stabilization of tetrahedral adducts by trypsin.
    Cleary JA; Malthouse JPG
    Biochem Biophys Rep; 2016 Mar; 5():272-284. PubMed ID: 28955834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced anti-tumor activity of arginine decarboxylase through the incorporation of aromatic amino acids at the multimer-forming interface.
    Park MY; Kim S; Kwon NH; Moon G; Cha J; Kwon I
    Biotechnol J; 2024 Jan; 19(1):e2300453. PubMed ID: 37899497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and partial physical-chemical characterization of a new bovine trypsin proteoform (zeta-trypsin).
    Cruz FT; Rosa DP; Vasconcelos AVB; de Oliveira JS; Bleicher L; Santos AMC
    Int J Biol Macromol; 2024 May; 268(Pt 2):131860. PubMed ID: 38670206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tobacco ribosomal DNA spacer element elevates Bowman-Birk inhibitor expression in tomato plants.
    Yakoby N; Garvey A; Raskin I
    Plant Cell Rep; 2006 Jun; 25(6):573-81. PubMed ID: 16408179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical amino acids responsible for converting specificities of proteins and for enhancing enzyme evolution are located around beta-turn potentials: data-based prediction.
    Murakami M
    J Protein Chem; 1993 Dec; 12(6):783-9. PubMed ID: 8136029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic enzymes in peptide synthesis.
    Konopińska D; Muzalewski F
    Mol Cell Biochem; 1983; 51(2):165-75. PubMed ID: 6343838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semisynthesis of Arg15, Glu15, Met15, and Nle15-aprotinin involving enzymatic peptide bond resynthesis.
    Beckmann J; Mehlich A; Schröder W; Wenzel HR; Tschesche H
    J Protein Chem; 1989 Feb; 8(1):101-13. PubMed ID: 2475133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic operon containing 14 bovine pancreatic trypsin inhibitor genes is expressed in E. coli.
    von Wilcken-Bergmann B; Tils D; Sartorius J; Auerswald EA; Schröder W; Müller-Hill B
    EMBO J; 1986 Dec; 5(12):3219-25. PubMed ID: 2434325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical semisynthesis of aprotinin homologues and derivatives mutated in P' positions.
    Groeger C; Wenzel HR; Tschesche H
    J Protein Chem; 1991 Oct; 10(5):527-33. PubMed ID: 1724726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic semisynthesis of aprotinin homologues mutated in P' positions.
    Groeger C; Wenzel HR; Tschesche H
    J Protein Chem; 1991 Apr; 10(2):245-51. PubMed ID: 1718310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.