These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Qin Y; Polacek N; Vesper O; Staub E; Einfeldt E; Wilson DN; Nierhaus KH Cell; 2006 Nov; 127(4):721-33. PubMed ID: 17110332 [TBL] [Abstract][Full Text] [Related]
3. Elongation factors on the ribosome. Nilsson J; Nissen P Curr Opin Struct Biol; 2005 Jun; 15(3):349-54. PubMed ID: 15922593 [TBL] [Abstract][Full Text] [Related]
4. Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation. Martemyanov KA; Gudkov AT FEBS Lett; 1999 Jun; 452(3):155-9. PubMed ID: 10386581 [TBL] [Abstract][Full Text] [Related]
5. [Studies on the mechanism of translocation in ribosomes. V. Comparison of the effect of antibiotic inhibitors of ribosomes on "enzymatic" and "non-enzymatic" translation]. Kostiashkina OE; Asatrian LS; Gavrilova LP; Spirin AS Mol Biol (Mosk); 1975; 9(5):775-82. PubMed ID: 765776 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Connell SR; Takemoto C; Wilson DN; Wang H; Murayama K; Terada T; Shirouzu M; Rost M; Schüler M; Giesebrecht J; Dabrowski M; Mielke T; Fucini P; Yokoyama S; Spahn CM Mol Cell; 2007 Mar; 25(5):751-64. PubMed ID: 17349960 [TBL] [Abstract][Full Text] [Related]
9. Structural and sequence comparisons arising from the solution structure of the transcription elongation factor NusG from Thermus thermophilus. Reay P; Yamasaki K; Terada T; Kuramitsu S; Shirouzu M; Yokoyama S Proteins; 2004 Jul; 56(1):40-51. PubMed ID: 15162485 [TBL] [Abstract][Full Text] [Related]
10. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. Johanson U; Aevarsson A; Liljas A; Hughes D J Mol Biol; 1996 May; 258(3):420-32. PubMed ID: 8642600 [TBL] [Abstract][Full Text] [Related]
11. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Kannan K; Vázquez-Laslop N; Mankin AS Cell; 2012 Oct; 151(3):508-20. PubMed ID: 23101624 [TBL] [Abstract][Full Text] [Related]
12. The conformational properties of elongation factor G and the mechanism of translocation. Czworkowski J; Moore PB Biochemistry; 1997 Aug; 36(33):10327-34. PubMed ID: 9254632 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into the mechanism of translational inhibition by the fungicide sordarin. Chakraborty B; Mukherjee R; Sengupta J J Comput Aided Mol Des; 2013 Feb; 27(2):173-84. PubMed ID: 23397219 [TBL] [Abstract][Full Text] [Related]
14. [Translocation mechanism of ribosomes]. Spirin AS Mol Biol (Mosk); 1977; 11(6):1335-43. PubMed ID: 618348 [TBL] [Abstract][Full Text] [Related]
15. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Domínguez JM; Martín JJ Antimicrob Agents Chemother; 1998 Sep; 42(9):2279-83. PubMed ID: 9736549 [TBL] [Abstract][Full Text] [Related]
16. Increased functional activity of elongation factor G with G16V mutation in the GTP-binding domain. Martemyanov KA; Liljas A; Gudkov AT Biochemistry (Mosc); 1998 Oct; 63(10):1216-9. PubMed ID: 9864458 [TBL] [Abstract][Full Text] [Related]