These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 129330)

  • 21. AN ALDOSTERONE BIOSYNTHETIC DEFECT IN A SALT-LOSING DISORDER.
    ULICK S; GAUTIER E; VETTER KK; MARKELLO JR; YAFFE S; LOWE CU
    J Clin Endocrinol Metab; 1964 Jul; 24():669-72. PubMed ID: 14212087
    [No Abstract]   [Full Text] [Related]  

  • 22. [Familial pseudohypoaldosteronism (apropos of 5 cases)].
    Roy C
    Arch Fr Pediatr; 1977 Jan; 34(1):37-54. PubMed ID: 851368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steroid excretion by an infant with an unusual salt-losing syndrome: a gas chromatographic-mass spectrometric study.
    Shackleton CH; Snodgrass GH
    Ann Clin Biochem; 1974 May; 11(3):91-9. PubMed ID: 4415894
    [No Abstract]   [Full Text] [Related]  

  • 24. Renal Na+-K+-ATPase in Okamoto and Dahl hypertensive rats.
    Rodriguez-Sargent C; Cangiano JL; Opava-Stitzer S; Martínez-Maldonado M
    Hypertension; 1981; 3(6 Pt 2):II-86-91. PubMed ID: 6457800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular basis for active Na,K-transport by Na,K-ATPase from outer renal medulla.
    Jørgensen PL
    Biochem Soc Symp; 1985; 50():59-79. PubMed ID: 2428372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na-K-ATPase activity.
    Le Hir M; Kaissling B; Dubach UC
    Cell Tissue Res; 1982; 224(3):493-504. PubMed ID: 6288247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Succinate dehydrogenase and Na+-K+-ATPase activities in cells of rat kidney tubules during increased excretion of sodium, caused by furosemide].
    Krestinskaya TV; Manusova NB
    Vopr Med Khim; 1975; 21(4):375-9. PubMed ID: 129953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Na-K-ATPase activity along the rabbit, rat, and mouse nephron.
    Katz AI; Doucet A; Morel F
    Am J Physiol; 1979 Aug; 237(2):F114-20. PubMed ID: 223456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel changes in red blood cell and renal Na-K-ATPase activity in adrenal and electrolyte disorders in the rat.
    Wald H; Scherzer P; Popovtzer MM
    Pflugers Arch; 1985 May; 404(1):56-60. PubMed ID: 2989767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats.
    Eiam-Ong S; Sabatini S
    Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
    Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of Na-K-ATPase in the rat collecting tubule by two diuretics: furosemide and amiloride.
    Mernissi GE; Doucet A
    Am J Physiol; 1984 Sep; 247(3 Pt 2):F485-90. PubMed ID: 6089591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the mechanism of trimethoprim-induced hyperkalemia.
    Eiam-Ong S; Kurtzman NA; Sabatini S
    Kidney Int; 1996 May; 49(5):1372-8. PubMed ID: 8731102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Pseudohypoaldosteronism--renal salt loss syndrome. Therapy and course exemplified by 2 siblings].
    Butenandt I; Dörr HG; Kuhnle U
    Monatsschr Kinderheilkd; 1986 Aug; 134(8):544-6. PubMed ID: 2945988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The renal tubular defect of Bartter's syndrome.
    Carmine Z; Ettore B; Giuseppe C; Quirino M
    Nephron; 1982; 32(2):140-8. PubMed ID: 7177291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal adaptation to potassium in the adrenalectomized rabbit. Role of distal tubular sodium-potassium adenosine triphosphatase.
    Garg LC; Narang N
    J Clin Invest; 1985 Sep; 76(3):1065-70. PubMed ID: 2995442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NATURE OF RENAL ESCAPE FROM THE SODIUM-RETAINING EFFECT OF ALDOSTERONE IN PRIMARY ALDOSTERONISM AND IN NORMAL SUBJECTS.
    ROVNER DR; CONN JW; KNOPF RF; COHEN EL; HSUEH MT
    J Clin Endocrinol Metab; 1965 Jan; 25():53-64. PubMed ID: 14252288
    [No Abstract]   [Full Text] [Related]  

  • 38. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.
    Féraille E; Doucet A
    Physiol Rev; 2001 Jan; 81(1):345-418. PubMed ID: 11152761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AVP dynamically increases paracellular Na
    Himmerkus N; Plain A; Marques RD; Sonntag SR; Paliege A; Leipziger J; Bleich M
    Pflugers Arch; 2017 Jan; 469(1):149-158. PubMed ID: 27924355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dependency of renal potassium excretion on Na,K-ATPase transport rate.
    Sejersted OM; Monclair T; Mathisen O; Hartmann A; Kiil F
    Acta Physiol Scand; 1985 Jan; 123(1):9-19. PubMed ID: 2982247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.