These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 12933563)

  • 1. Estimating the immunity coverage required to prevent epidemics in a community of households.
    Britton T; Becker NG
    Biostatistics; 2000 Dec; 1(4):389-402. PubMed ID: 12933563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic multitype epidemics in a community of households: estimation and form of optimal vaccination schemes.
    Ball F; Britton T; Lyne O
    Math Biosci; 2004 Sep; 191(1):19-40. PubMed ID: 15312742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalized stochastic model for the analysis of infectious disease final size data.
    Addy CL; Longini IM; Haber M
    Biometrics; 1991 Sep; 47(3):961-74. PubMed ID: 1742449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data.
    Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boëlle PY
    Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Household and community transmission parameters from final distributions of infections in households.
    Longini IM; Koopman JS
    Biometrics; 1982 Mar; 38(1):115-26. PubMed ID: 7082755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating individual and household reproduction numbers in an emerging epidemic.
    Fraser C
    PLoS One; 2007 Aug; 2(8):e758. PubMed ID: 17712406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of community structure on the immunity coverage required to prevent epidemics.
    Becker NG; Utev S
    Math Biosci; 1998 Jan; 147(1):23-39. PubMed ID: 9401350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation for discrete time branching processes with application to epidemics.
    Becker N
    Biometrics; 1977 Sep; 33(3):515-22. PubMed ID: 911971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A discrete-time model for the statistical analysis of infectious disease incidence data.
    Rampey AH; Longini IM; Haber M; Monto AS
    Biometrics; 1992 Mar; 48(1):117-28. PubMed ID: 1316178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Household and community transmission of the Asian influenza A (H2N2) and influenza B viruses in 1957 and 1961.
    Nishiura H; Chowell G
    Southeast Asian J Trop Med Public Health; 2007 Nov; 38(6):1075-83. PubMed ID: 18613549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks.
    Finkenstädt BF; Bjørnstad ON; Grenfell BT
    Biostatistics; 2002 Dec; 3(4):493-510. PubMed ID: 12933594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integral equation model for the control of a smallpox outbreak.
    Aldis GK; Roberts MG
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Household epidemics: modelling effects of early stage vaccination.
    Shaban N; Andersson M; Svensson A; Britton T
    Biom J; 2009 Jun; 51(3):408-19. PubMed ID: 19548285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One dose of varicella vaccine does not prevent school outbreaks: is it time for a second dose?
    Lopez AS; Guris D; Zimmerman L; Gladden L; Moore T; Haselow DT; Loparev VN; Schmid DS; Jumaan AO; Snow SL
    Pediatrics; 2006 Jun; 117(6):e1070-7. PubMed ID: 16740809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models for the statistical analysis of infectious disease data.
    Haber M; Longini IM; Cotsonis GA
    Biometrics; 1988 Mar; 44(1):163-73. PubMed ID: 3358986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measles transmission and vaccine effectiveness during a large outbreak on a densely populated island: implications for vaccination policy.
    Marin M; Nguyen HQ; Langidrik JR; Edwards R; Briand K; Papania MJ; Seward JF; LeBaron CW
    Clin Infect Dis; 2006 Feb; 42(3):315-9. PubMed ID: 16392073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty in estimates of HIV/AIDS: the estimation and application of plausibility bounds.
    Grassly NC; Morgan M; Walker N; Garnett G; Stanecki KA; Stover J; Brown T; Ghys PD
    Sex Transm Infect; 2004 Aug; 80 Suppl 1(Suppl 1):i31-38. PubMed ID: 15249697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation and inference of R0 of an infectious pathogen by a removal method.
    Ferrari MJ; Bjørnstad ON; Dobson AP
    Math Biosci; 2005 Nov; 198(1):14-26. PubMed ID: 16216286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian inference for stochastic multitype epidemics in structured populations using sample data.
    O'Neill PD
    Biostatistics; 2009 Oct; 10(4):779-91. PubMed ID: 19648227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.