BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12933791)

  • 1. Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor.
    Ishima R; Torchia DA; Lynch SM; Gronenborn AM; Louis JM
    J Biol Chem; 2003 Oct; 278(44):43311-9. PubMed ID: 12933791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting monomeric HIV-1 protease. Characterization and redesign for improved properties.
    Louis JM; Ishima R; Nesheiwat I; Pannell LK; Lynch SM; Torchia DA; Gronenborn AM
    J Biol Chem; 2003 Feb; 278(8):6085-92. PubMed ID: 12468541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease.
    Wondrak EM; Louis JM
    Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site.
    Kovalskyy D; Dubyna V; Mark AE; Kornelyuk A
    Proteins; 2005 Feb; 58(2):450-8. PubMed ID: 15562519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor.
    Sayer JM; Aniana A; Louis JM
    J Mol Biol; 2012 Sep; 422(2):230-44. PubMed ID: 22659320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism.
    Louis JM; Wondrak EM; Kimmel AR; Wingfield PT; Nashed NT
    J Biol Chem; 1999 Aug; 274(33):23437-42. PubMed ID: 10438521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular dynamics.
    Venable RM; Brooks BR; Carson FW
    Proteins; 1993 Apr; 15(4):374-84. PubMed ID: 8460108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into beta-sheet in water solution.
    Yan MC; Sha Y; Wang J; Xiong XQ; Ren JH; Cheng MS
    Proteins; 2008 Feb; 70(3):731-8. PubMed ID: 17729281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 protease with leucine zipper fused at N-terminus exhibits enhanced linker amino acid-dependent activity.
    Yu FH; Wang CT
    Retrovirology; 2018 Apr; 15(1):32. PubMed ID: 29655366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maturation of HIV-1 protease precursor studied by discrete molecular dynamics.
    Kimura S; Caldarini M; Broglia RA; Dokholyan NV; Tiana G
    Proteins; 2014 Apr; 82(4):633-9. PubMed ID: 24123234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.