These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12934087)

  • 41. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury.
    Zörner B; Blanckenhorn WU; Dietz V; ; Curt A
    J Neurotrauma; 2010 Jan; 27(1):241-52. PubMed ID: 19645527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional roles of lower-limb joint moments while walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):194-201. PubMed ID: 15621325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation effects of epidural spinal cord stimulation on muscle activities during walking.
    Huang H; He J; Herman R; Carhart MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):14-23. PubMed ID: 16562627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Classification of idiopathic toe walking based on gait analysis: development and application of the ITW severity classification.
    Alvarez C; De Vera M; Beauchamp R; Ward V; Black A
    Gait Posture; 2007 Sep; 26(3):428-35. PubMed ID: 17161602
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis.
    Vickers DR; Palk C; McIntosh AS; Beatty KT
    Gait Posture; 2008 Apr; 27(3):518-29. PubMed ID: 17707643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Static and dynamic gait parameters before and after multilevel soft tissue surgery in ambulating children with cerebral palsy.
    Bernthal NM; Gamradt SC; Kay RM; Wren TA; Cuomo AV; Reid J; Bales J; Otsuka NY
    J Pediatr Orthop; 2010 Mar; 30(2):174-9. PubMed ID: 20179566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A portable gait assessment tool to record temporal gait parameters in SCI.
    Galen SS; Clarke CJ; Allan DB; Conway BA
    Med Eng Phys; 2011 Jun; 33(5):626-32. PubMed ID: 21288759
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed.
    Pépin A; Ladouceur M; Barbeau H
    Spinal Cord; 2003 May; 41(5):271-9. PubMed ID: 12714989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured.
    Herman R; He J; D'Luzansky S; Willis W; Dilli S
    Spinal Cord; 2002 Feb; 40(2):65-8. PubMed ID: 11926417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BiosStep-assisted walking in spinal cord-injured patients: an evaluation report.
    Tabernig CB; Cherniz AS; Escobar SO
    Int J Rehabil Res; 2007 Sep; 30(3):249-53. PubMed ID: 17762773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of external cues on gait performance in independent ambulatory incomplete spinal cord injury patients.
    Amatachaya S; Keawsutthi M; Amatachaya P; Manimmanakorn N
    Spinal Cord; 2009 Sep; 47(9):668-73. PubMed ID: 19139759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reciprocal gait orthoses and powered gait orthoses for walking by spinal cord injury patients.
    Arazpour M; Bani MA; Hutchins SW
    Prosthet Orthot Int; 2013 Feb; 37(1):14-21. PubMed ID: 22588849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Training conditions that best reproduce the joint powers of unsupported walking.
    Worthen-Chaudhari L; Schmiedeler JP; Basso DM
    Gait Posture; 2015 Feb; 41(2):597-602. PubMed ID: 25737235
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Locomotor body scheme.
    Ivanenko YP; Dominici N; Daprati E; Nico D; Cappellini G; Lacquaniti F
    Hum Mov Sci; 2011 Apr; 30(2):341-51. PubMed ID: 21453667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gait analysis of spinal cord injured subjects: effects of injury level and spasticity.
    Krawetz P; Nance P
    Arch Phys Med Rehabil; 1996 Jul; 77(7):635-8. PubMed ID: 8669987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utilizing three dimensional clinical gait analysis to optimize mobility outcomes in incomplete spinal cord damage.
    Murphy AT; Kravtsov S; Sangeux M; Rawicki B; New PW
    Gait Posture; 2019 Oct; 74():53-59. PubMed ID: 31446333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of walking with an orthosis on bone mineral density by determination of the absolute values of the loads applied on the limb.
    Karimi MT
    Australas Phys Eng Sci Med; 2012 Mar; 35(1):55-61. PubMed ID: 22215308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.