These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12934087)

  • 81. Methods of measurement in Soviet gait analysis research, 1963-1974.
    Selker LG
    Phys Ther; 1976 Feb; 56(2):163-7. PubMed ID: 128764
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Validation of the instrumented evaluation of spatio-temporal gait parameters in patients with motor incomplete spinal cord injury.
    Pérez-Sanpablo AI; Quinzaños-Fresnedo J; Loera-Cruz R; Quiñones-Uriostegui I; Rodriguez-Reyes G; Pérez-Zavala R
    Spinal Cord; 2017 Jul; 55(7):712. PubMed ID: 28684871
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Gait analysis of spinal cord injured subjects: effects of injury level and spasticity.
    Krawetz P; Nance P
    Arch Phys Med Rehabil; 1996 Jul; 77(7):635-8. PubMed ID: 8669987
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.
    Tamburella F; Scivoletto G; Molinari M
    Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Improvement of the gait deviation index for spinal cord injury to broaden its applicability: the reduced gait deviation index for spinal cord injury (rSCI-GDI).
    Herrera-Valenzuela D; Sinovas-Alonso I; Reyes AL; Gil-Agudo Á; Del-Ama AJ
    Front Bioeng Biotechnol; 2024; 12():1431596. PubMed ID: 39416277
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Movement analysis in spinal cord injuries : Assistance in clinical decision making].
    Kröger I; Wackerle H; Maier D; Mach O; Augat P
    Orthopadie (Heidelb); 2023 Aug; 52(8):643-651. PubMed ID: 37490136
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Derivation of the Gait Deviation Index for Spinal Cord Injury.
    Herrera-Valenzuela D; Sinovas-Alonso I; Moreno JC; Gil-Agudo Á; Del-Ama AJ
    Front Bioeng Biotechnol; 2022; 10():874074. PubMed ID: 35875486
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Towards a Mobile Gait Analysis for Patients with a Spinal Cord Injury: A Robust Algorithm Validated for Slow Walking Speeds.
    Werner C; Awai Easthope C; Curt A; Demkó L
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770686
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Machine learning classifies predictive kinematic features in a mouse model of neurodegeneration.
    Huang R; Nikooyan AA; Xu B; Joseph MS; Damavandi HG; von Trotha N; Li L; Bhattarai A; Zadeh D; Seo Y; Liu X; Truong PA; Koo EH; Leiter JC; Lu DC
    Sci Rep; 2021 Feb; 11(1):3950. PubMed ID: 33597593
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Reliability of three-dimensional kinematic gait data in adults with spinal cord injury.
    Wedege P; Steffen K; Strøm V; Opheim AI
    J Rehabil Assist Technol Eng; 2017; 4():2055668317729992. PubMed ID: 31186937
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Predicting knee osteoarthritis risk in injured populations.
    Long MJ; Papi E; Duffell LD; McGregor AH
    Clin Biomech (Bristol, Avon); 2017 Aug; 47():87-95. PubMed ID: 28618311
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.
    Caimmi M; Guanziroli E; Malosio M; Pedrocchi N; Vicentini F; Molinari Tosatti L; Molteni F
    Biomed Res Int; 2015; 2015():484131. PubMed ID: 26539500
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls.
    Malone A; Meldrum D; Bolger C
    Eur Spine J; 2012 Dec; 21(12):2456-66. PubMed ID: 22825630
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Gait kinematic analysis in patients with a mild form of central cord syndrome.
    Gil-Agudo A; Pérez-Nombela S; Forner-Cordero A; Pérez-Rizo E; Crespo-Ruiz B; del Ama-Espinosa A
    J Neuroeng Rehabil; 2011 Feb; 8():7. PubMed ID: 21288347
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The effects of tone-reducing orthotics on walking of an individual after incomplete spinal cord injury.
    Nash B; Roller JM; Parker MG
    J Neurol Phys Ther; 2008 Mar; 32(1):39-47. PubMed ID: 18463554
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Prediction of gait outcome with the knee-ankle-foot orthosis with medial hip joint in patients with spinal cord injuries: a study using recursive partitioning analysis.
    Suzuki T; Sonoda S; Saitoh E; Onogi K; Fujino H; Teranishi T; Oyobe T; Katoh M; Ohtsuka K
    Spinal Cord; 2007 Jan; 45(1):57-63. PubMed ID: 16819556
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Clinical relevance of gait research applied to clinical trials in spinal cord injury.
    Ditunno J; Scivoletto G
    Brain Res Bull; 2009 Jan; 78(1):35-42. PubMed ID: 18848865
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Case for gait analysis as part of the management of incomplete spinal cord injury.
    Patrick JH
    Spinal Cord; 2003 Sep; 41(9):479-82. PubMed ID: 12934087
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.