These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 12934933)

  • 1. Rhizobacterial diversity in India and its influence on soil and plant health.
    Johri BN; Sharma A; Virdi JS
    Adv Biochem Eng Biotechnol; 2003; 84():49-89. PubMed ID: 12934933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Factors affecting colonization of introduced microorganisms on plant roots].
    Zhang B; Zhang P; Chen X
    Ying Yong Sheng Tai Xue Bao; 2000 Dec; 11(6):951-3. PubMed ID: 11767580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial bacteria of agricultural importance.
    Babalola OO
    Biotechnol Lett; 2010 Nov; 32(11):1559-70. PubMed ID: 20635120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
    Gouda S; Kerry RG; Das G; Paramithiotis S; Shin HS; Patra JK
    Microbiol Res; 2018 Jan; 206():131-140. PubMed ID: 29146250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices.
    Tan Y; Cui Y; Li H; Kuang A; Li X; Wei Y; Ji X
    J Basic Microbiol; 2017 Apr; 57(4):337-344. PubMed ID: 28060404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.
    Sharaff M; Kamat S; Archana G
    Ecotoxicol Environ Saf; 2017 Apr; 138():113-121. PubMed ID: 28038338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizobacterial species richness improves sorghum growth and soil nutrient synergism in a nutrient-poor greenhouse soil.
    Sahib MR; Pervaiz ZH; Williams MA; Saleem M; DeBolt S
    Sci Rep; 2020 Sep; 10(1):15454. PubMed ID: 32963320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria.
    Dell'Amico E; Cavalca L; Andreoni V
    FEMS Microbiol Ecol; 2005 Apr; 52(2):153-62. PubMed ID: 16329902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.
    Berg G; Smalla K
    FEMS Microbiol Ecol; 2009 Apr; 68(1):1-13. PubMed ID: 19243436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils.
    Sturz AV; Matheson BG; Arsenault W; Kimpinski J; Christie BR
    Can J Microbiol; 2001 Nov; 47(11):1013-24. PubMed ID: 11766050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research advances in plant growth-promoting rhizobacteria and its application prospects].
    Hu J; Xue D; Ma C; Wang S
    Ying Yong Sheng Tai Xue Bao; 2004 Oct; 15(10):1963-6. PubMed ID: 15624845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing rhizobacteria to fulfil inter-linked nutrient dependency on soil and alleviate stresses in plants.
    Neemisha ; Kumar A; Sharma P; Kaur A; Sharma S; Jain R
    J Appl Microbiol; 2022 Nov; 133(5):2694-2716. PubMed ID: 35656999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling.
    Bukhat S; Imran A; Javaid S; Shahid M; Majeed A; Naqqash T
    Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes.
    Miranda-Sánchez F; Rivera J; Vinuesa P
    Environ Microbiol; 2016 Sep; 18(8):2375-91. PubMed ID: 26395550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and function of root exudates.
    Badri DV; Vivanco JM
    Plant Cell Environ; 2009 Jun; 32(6):666-81. PubMed ID: 19143988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.
    Zhang Y; Xu J; Riera N; Jin T; Li J; Wang N
    Microbiome; 2017 Aug; 5(1):97. PubMed ID: 28797279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological perspectives of microbes in agro-ecosystems.
    Choudhary DK; Sharma KP; Gaur RK
    Biotechnol Lett; 2011 Oct; 33(10):1905-10. PubMed ID: 21660571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.