These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 12935038)

  • 1. Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond.
    Hood RQ; Kent PR; Needs RJ; Briddon PR
    Phys Rev Lett; 2003 Aug; 91(7):076403. PubMed ID: 12935038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited states of methylene from quantum Monte Carlo.
    Zimmerman PM; Toulouse J; Zhang Z; Musgrave CB; Umrigar CJ
    J Chem Phys; 2009 Sep; 131(12):124103. PubMed ID: 19791848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energies of the first row atoms from quantum Monte Carlo.
    Brown MD; Trail JR; Ríos PL; Needs RJ
    J Chem Phys; 2007 Jun; 126(22):224110. PubMed ID: 17581047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond.
    Zyubin AS; Mebel AM; Hayashi M; Chang HC; Lin SH
    J Comput Chem; 2009 Jan; 30(1):119-31. PubMed ID: 18548526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO.
    Mitra C; Krogel JT; Santana JA; Reboredo FA
    J Chem Phys; 2015 Oct; 143(16):164710. PubMed ID: 26520546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo.
    Santana JA; Krogel JT; Kim J; Kent PR; Reboredo FA
    J Chem Phys; 2015 Apr; 142(16):164705. PubMed ID: 25933782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.
    Haghighi Mood K; Lüchow A
    J Phys Chem A; 2017 Aug; 121(32):6165-6171. PubMed ID: 28745900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Monte Carlo calculations of the potential energy curve of the helium dimer.
    Springall R; Per MC; Russo SP; Snook IK
    J Chem Phys; 2008 Mar; 128(11):114308. PubMed ID: 18361572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion Monte Carlo Perspective on the Spin-State Energetics of [Fe(NCH)6](2.).
    Fumanal M; Wagner LK; Sanvito S; Droghetti A
    J Chem Theory Comput; 2016 Sep; 12(9):4233-41. PubMed ID: 27500854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of nitrogen-vacancy complexes in diamond and cubic SiC: dose dependencies and spin-Hamiltonian parameters.
    Petrenko TL; Bryksa VP
    J Phys Condens Matter; 2017 Aug; 29(32):325506. PubMed ID: 28541927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes.
    Scemama A; Benali A; Jacquemin D; Caffarel M; Loos PF
    J Chem Phys; 2018 Jul; 149(3):034108. PubMed ID: 30037241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion quantum Monte Carlo calculations of SrFeO
    Santana JA; Krogel JT; Kent PRC; Reboredo FA
    J Chem Phys; 2017 Jul; 147(3):034701. PubMed ID: 28734312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.
    Wang Y; Braams BJ; Bowman JM; Carter S; Tew DP
    J Chem Phys; 2008 Jun; 128(22):224314. PubMed ID: 18554020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Monte Carlo calculation of the binding energy of the beryllium dimer.
    Deible MJ; Kessler M; Gasperich KE; Jordan KD
    J Chem Phys; 2015 Aug; 143(8):084116. PubMed ID: 26328827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants.
    Zhou X; Wang F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.