These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 12935122)
1. Average size of random polygons with fixed knot topology. Matsuda H; Yao A; Tsukahara H; Deguchi T; Furuta K; Inami T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011102. PubMed ID: 12935122 [TBL] [Abstract][Full Text] [Related]
2. Scaling behavior of knotted random polygons and self-avoiding polygons: Topological swelling with enhanced exponent. Uehara E; Deguchi T J Chem Phys; 2017 Dec; 147(21):214901. PubMed ID: 29221412 [TBL] [Abstract][Full Text] [Related]
3. Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons. Shimamura MK; Deguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051802. PubMed ID: 12059583 [TBL] [Abstract][Full Text] [Related]
4. Universal properties of knotted polymer rings. Baiesi M; Orlandini E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031805. PubMed ID: 23030936 [TBL] [Abstract][Full Text] [Related]
5. Interplay between writhe and knotting for swollen and compact polymers. Baiesi M; Orlandini E; Whittington SG J Chem Phys; 2009 Oct; 131(15):154902. PubMed ID: 20568879 [TBL] [Abstract][Full Text] [Related]
6. Size of knots in ring polymers. Marcone B; Orlandini E; Stella AL; Zonta F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041105. PubMed ID: 17500863 [TBL] [Abstract][Full Text] [Related]
7. Statistical and Dynamical Properties of Topological Polymers with Graphs and Ring Polymers with Knots. Deguchi T; Uehara E Polymers (Basel); 2017 Jun; 9(7):. PubMed ID: 30970929 [TBL] [Abstract][Full Text] [Related]
8. On the mean and variance of the writhe of random polygons. Portillo J; Diao Y; Scharein R; Arsuaga J; Vazquez M J Phys A Math Theor; 2011; 44(27):275004. PubMed ID: 25685182 [TBL] [Abstract][Full Text] [Related]
9. Random walks on a ( 2+1)-dimensional deformable medium. Huang SY; Zou XW; Zhang WB; Jin ZZ Phys Rev Lett; 2002 Feb; 88(5):056102. PubMed ID: 11863752 [TBL] [Abstract][Full Text] [Related]
10. Gyration radius of a circular polymer under a topological constraint with excluded volume. Shimamura MK; Deguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):020801. PubMed ID: 11497553 [TBL] [Abstract][Full Text] [Related]
11. Self-avoiding walks on scale-free networks. Herrero CP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016103. PubMed ID: 15697654 [TBL] [Abstract][Full Text] [Related]
12. Subgraphs in random networks. Itzkovitz S; Milo R; Kashtan N; Ziv G; Alon U Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026127. PubMed ID: 14525069 [TBL] [Abstract][Full Text] [Related]
13. Scattering functions of knotted ring polymers. Shimamura MK; Kamata K; Yao A; Deguchi T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041804. PubMed ID: 16383412 [TBL] [Abstract][Full Text] [Related]
14. Random sequential renormalization of networks: application to critical trees. Bizhani G; Sood V; Paczuski M; Grassberger P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036110. PubMed ID: 21517561 [TBL] [Abstract][Full Text] [Related]
15. Knot localization in adsorbing polymer rings. Marcone B; Orlandini E; Stella AL Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051804. PubMed ID: 18233678 [TBL] [Abstract][Full Text] [Related]
16. Response of single polymers to localized step strains. Panja D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011803. PubMed ID: 19257060 [TBL] [Abstract][Full Text] [Related]
17. Macromolecular knot in good and poor solvents: a Monte Carlo simulation. Sun HQ; Zhang L; Liao Q J Phys Chem B; 2010 Sep; 114(38):12293-7. PubMed ID: 20825151 [TBL] [Abstract][Full Text] [Related]
18. Statistical and hydrodynamic properties of double-ring polymers with a fixed linking number between twin rings. Uehara E; Deguchi T J Chem Phys; 2014 Jan; 140(4):044902. PubMed ID: 25669578 [TBL] [Abstract][Full Text] [Related]
19. World Wide Web scaling exponent from Simon's 1955 model. Bornholdt S; Ebel H Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):035104. PubMed ID: 11580377 [TBL] [Abstract][Full Text] [Related]
20. Convex lattice polygons of fixed area with perimeter-dependent weights. Rajesh R; Dhar D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016130. PubMed ID: 15697681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]