These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12935145)

  • 1. Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels.
    Kuksenok O; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011502. PubMed ID: 12935145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using patterned substrates to promote mixing in microchannels.
    Kuksenok O; Yeomans JM; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031502. PubMed ID: 11909061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusive intertwining of two fluid phases in chemically patterned microchannels.
    Kuksenok O; Jasnow D; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051505. PubMed ID: 14682803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of immiscible fluids in chemically patterned nanochannels.
    Cieplak M; Banavar JR
    J Chem Phys; 2008 Mar; 128(10):104709. PubMed ID: 18345921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic droplet formation in chemically patterned microchannels.
    Kuksenok O; Jasnow D; Yeomans J; Balazs AC
    Phys Rev Lett; 2003 Sep; 91(10):108303. PubMed ID: 14525516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetically-driven flow mixing in microchannels with wavy surface.
    Chen CK; Cho CC
    J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements.
    Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023022. PubMed ID: 24032938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.
    Sharma A; Tiwari V; Kumar V; Mandal TK; Bandyopadhyay D
    Electrophoresis; 2014 Oct; 35(20):2930-7. PubMed ID: 25044128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient.
    Gaikwad H; Basu DN; Mondal PK
    Electrophoresis; 2016 Jul; 37(14):1998-2009. PubMed ID: 27079927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically driven fluid transport in long microchannels.
    Shen M; Ye F; Liu R; Chen K; Yang M; Ripoll M
    J Chem Phys; 2016 Sep; 145(12):124119. PubMed ID: 27782664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls.
    Alizadeh A; Zhang L; Wang M
    J Colloid Interface Sci; 2014 Oct; 431():50-63. PubMed ID: 24984071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.