These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12935192)

  • 1. Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics.
    Yang Y; Fleischhauer M; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):015602. PubMed ID: 12935192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.
    Mavrogordatos TK; Morris SM; Wood SM; Coles HJ; Wilkinson TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062504. PubMed ID: 23848702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous emission near the band edge of a three-dimensional photonic crystal: a fractional calculus approach.
    Cheng SC; Wu JN; Tsai MR; Hsieh WF
    J Phys Condens Matter; 2009 Jan; 21(1):015503. PubMed ID: 21817224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous emission in one-dimensional photonic crystals.
    Sánchez AS; Halevi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056609. PubMed ID: 16383773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superradiance for Atoms Trapped along a Photonic Crystal Waveguide.
    Goban A; Hung CL; Hood JD; Yu SP; Muniz JA; Painter O; Kimble HJ
    Phys Rev Lett; 2015 Aug; 115(6):063601. PubMed ID: 26296116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous emission dynamics in an omnidirectional waveguide made of photonic crystals.
    Huang CH; Cheng SC; Wu JN; Hsieh WF
    J Phys Condens Matter; 2011 Jun; 23(22):225301. PubMed ID: 21572225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified spontaneous emission from a two-dimensional photonic crystal.
    Zeng Y; Chen X; Lu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):047601. PubMed ID: 15600567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiclassical model of stimulated Raman scattering in photonic crystals.
    Florescu L; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016611. PubMed ID: 16090111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic simulation of giant atom decay.
    Longhi S
    Opt Lett; 2020 Jun; 45(11):3017-3020. PubMed ID: 32479447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atom-atom interactions around the band edge of a photonic crystal waveguide.
    Hood JD; Goban A; Asenjo-Garcia A; Lu M; Yu SP; Chang DE; Kimble HJ
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10507-12. PubMed ID: 27582467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous emission from photonic crystals: full vectorial calculations.
    Li ZY; Lin LL; Zhang ZQ
    Phys Rev Lett; 2000 May; 84(19):4341-4. PubMed ID: 10990681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decay kinetic properties of atoms in photonic crystals with absolute gaps.
    Wang XH; Gu BY; Wang R; Xu HQ
    Phys Rev Lett; 2003 Sep; 91(11):113904. PubMed ID: 14525429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier dynamics in GaAs photonic crystal cavities near the material band edge.
    Bose R; Pelc JS; Vo S; Santori CM; Beausoleil RG
    Opt Express; 2015 May; 23(10):12732-9. PubMed ID: 26074527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.
    Notararigo V; Passante R; Rizzuto L
    Sci Rep; 2018 Mar; 8(1):5193. PubMed ID: 29581454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach.
    Severini S; Settimi A; Sibilia C; Bertolotti M; Napoli A; Messina A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056614. PubMed ID: 15600786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.
    Kumar PH; Venkatesh Y; Siva D; Ramakrishna B; Bangal PR
    J Phys Chem A; 2015 Feb; 119(8):1267-78. PubMed ID: 25633537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled dipole method for radiation dynamics in finite photonic crystal structures.
    Bordas F; Louvion N; Callard S; Chaumet PC; Rahmani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056601. PubMed ID: 16803051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.
    Ding C; Li J; Yu R; Hao X; Wu Y
    Opt Express; 2012 Mar; 20(7):7870-85. PubMed ID: 22453461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.
    Wan RG; Zhang TY
    Opt Express; 2011 Dec; 19(25):25823-32. PubMed ID: 22273975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.