These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable. Jamsek J; Stefanovska A; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046221. PubMed ID: 17995096 [TBL] [Abstract][Full Text] [Related]
3. Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Jamsek J; Palus M; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036207. PubMed ID: 20365832 [TBL] [Abstract][Full Text] [Related]
4. Spurious detection of phase synchronization in coupled nonlinear oscillators. Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators. Blaha KA; Pikovsky A; Rosenblum M; Clark MT; Rusin CG; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046201. PubMed ID: 22181239 [TBL] [Abstract][Full Text] [Related]
6. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states. Lee WS; Ott E; Antonsen TM Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952 [TBL] [Abstract][Full Text] [Related]
7. Estimation of coupling between oscillators from short time series via phase dynamics modeling: limitations and application to EEG data. Smirnov DA; Bodrov MB; Velazquez JL; Wennberg RA; Bezruchko BP Chaos; 2005 Jun; 15(2):24102. PubMed ID: 16035902 [TBL] [Abstract][Full Text] [Related]
8. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Hong H; Park H; Choi MY Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558 [TBL] [Abstract][Full Text] [Related]
9. Synchronization of oscillators in a Kuramoto-type model with generic coupling. Vlasov V; Macau EE; Pikovsky A Chaos; 2014 Jun; 24(2):023120. PubMed ID: 24985434 [TBL] [Abstract][Full Text] [Related]
10. Interacting stochastic oscillators. Zhang J; Yuan Z; Wang J; Zhou T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981 [TBL] [Abstract][Full Text] [Related]
11. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra. Dinpajooh M; Matyushov DV J Phys Chem B; 2014 Jul; 118(28):7925-36. PubMed ID: 24707917 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear transient waves in coupled phase oscillators with inertia. Jörg DJ Chaos; 2015 May; 25(5):053106. PubMed ID: 26026318 [TBL] [Abstract][Full Text] [Related]
13. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513 [TBL] [Abstract][Full Text] [Related]
14. Detecting anomalous phase synchronization from time series. Tokuda IT; Kumar Dana S; Kurths J Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500 [TBL] [Abstract][Full Text] [Related]
15. Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions. Giver M; Jabeen Z; Chakraborty B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046206. PubMed ID: 21599269 [TBL] [Abstract][Full Text] [Related]
16. Critical manifold of globally coupled overdamped anharmonic oscillators driven by additive Gaussian white noise. Kürsten R; Gütter S; Behn U Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022114. PubMed ID: 24032782 [TBL] [Abstract][Full Text] [Related]
17. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. Duggento A; Stankovski T; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912 [TBL] [Abstract][Full Text] [Related]
18. Phase dynamics of coupled oscillators reconstructed from data. Kralemann B; Cimponeriu L; Rosenblum M; Pikovsky A; Mrowka R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066205. PubMed ID: 18643348 [TBL] [Abstract][Full Text] [Related]
19. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise. Gupta S; Campa A; Ruffo S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438 [TBL] [Abstract][Full Text] [Related]